Narzędzia help

Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
first last
cannonical link button

http://yadda.icm.edu.pl:80/baztech/element/bwmeta1.element.baztech-491e249b-6556-4299-93a7-aa55b8045159

Czasopismo

Acta Geophysica

Tytuł artykułu

A comparison of the estimated effective elastic thickness of the lithosphere using terrestrial and satellite-derived data in Iran

Autorzy Abbaszadeh, M.  Sharifi, M.  Nikkhoo, M. 
Treść / Zawartość http://agp.igf.edu.pl/ http://link.springer.com/journal/volumesAndIssues/11600
Warianty tytułu
Języki publikacji EN
Abstrakty
EN The effective elastic thickness of the lithosphere has an important role in constraining compositional structure, geothermal gradient and tectonic forces within the lithosphere and the thickness of this layer can be used to evaluate the earthquakes’ focal depth. Hence, assessment of the elastic thickness of the lithosphere by gravitational admittance method in Iran is the main objective of this paper. Although the global geopotential models estimated from the satellite missions and surface data can portray the Earth’s gravity field in high precision and resolution, there are some debates about using them for lithosphere investigations. We used both the terrestrial data which have been provided by NCC (National Cartographic Center of Iran) and BGI (Bureau Gravimetrique International), and the satellite-derived gravity and topography which are generated by EIGEN-GL04C and ETOPO5, respectively. Finally, it is concluded that signal content of the satellite-derived data is as rich as the terrestrial one and it can be used for the determination of the lithosphere bending.
Słowa kluczowe
EN satellite-derived data   spectral analysis   gravitational admittance   noise  
Wydawca Instytut Geofizyki PAN
Springer
Czasopismo Acta Geophysica
Rocznik 2013
Tom Vol. 61, no. 3
Strony 638--648
Opis fizyczny Bibliogr. 22 poz.
Twórcy
autor Abbaszadeh, M.
  • Department of Surveying and Geomatics Engineering, Faculty of Civil Engineering, Babol Noushirvani University of Technology, Babol, Iran, m.abbaszadeh@nit.ac.ir
autor Sharifi, M.
  • Department of Surveying and Geomatics Engineering, College of Engineering, University of Tehran, Tehran, Iran, sharifi@ut.ac.ir
autor Nikkhoo, M.
Bibliografia
Anderson, R.N., D. McKenzie, and J.G. Sclater (1973), Gravity, bathymetry and convection in the Earth, Earth Planet. Sci. Lett. 18, 3, 391-407, DOI:10.1016/0012-821X(73)90095-2.
Berberian, M. (1995), Master “blind” thrust faults hidden under the Zagros folds: Active basement tectonics and surface morphotectonics, Tectonophysics 241, 3-4, 193-224, DOI: 10.1016/0040-1951(94)00185-C.
Dewey, J.F., M.R. Hempton, W.S.F. Kidd, F. Saroglu, and A.M.C. Şengör (1986), Shortening of continental lithosphere: the neotectonics of Eastern Anatolia – a young collision zone, Geol. Soc. London, Spec. Publ. 19, 1-36.
Engdahl, E.R., A.J. Jackson, S.C. Myers, E.A. Bergman, and K. Priestly (2006), Relocation and assessment of seismicity in the Iran region, Geophys. J. Int. 167, 2, 761-778, DOI: 10.1111/j.1365-246X.2006.03127.x.
Förste, C., F. Flechtner, R. Schmidt, R. König, U. Meyer, R. Stubenvoll, M. Rothacher, F. Barthelmes, H. Neumayer, R. Biancale, S. Bruinsma, J.-M. Lemoine, and S. Loyer (2006), Global mean gravity field models from combination of satellite mission and altimetry/gravimetry surface data. In: Proc. 3rd Int. GOCE User Workshop, ESA/ESRIN, 6-8 November 2006, Frascati, Italy.
Galán, R.A., and I.F. Casallas (2010), Determination of effective elastic thickness of the Colombian Andes using satellite-derived gravity data, Earth Sci. Res. J. 14, 1, 7-16.
Hempton, M.R. (1987), Constraints on Arabian Plate motion and extensional history of the Red Sea, Tectonics 6, 6, 687-705, DOI: 10.1029/TC006i006p00687.
Hofmann-Wellenhof, B., and H. Moritz (2006), Physical Geodesy, 2nd ed., Springer, Wien – New York, 403 pp.
Jackson, J., and D. McKenzie (1984), Active tectonics of the Alpine-Himalayan Belt between western Turkey and Pakistan, Geophys. J. Roy. Astr. Soc. 77, 1, 185-264, DOI: 10.1111/j.1365-246X.1984.tb01931.x.
Jekeli, C. (1981), Alternative methods to smooth the Earth’s gravity field, Report No. 327, Dept. Geodetic Science and Surveying, Ohio State Univ., Columbus, USA.
Maggi, A., J.A. Jackson, D. McKenzie, and K. Priestley (2000), Earthquake focal depths, effective elastic thickness, and the strength of the continental lithosphere, Geology 28, 6, 495-498, DOI: 10.1130/0091-7613(2000)28<495:EFDEET>2.0.CO;2.
McClusky, S., S. Balassanian. A. Barka, C. Demir, S. Ergintav, I. Georgiev, O. Gurkan, M. Hamburger, K. Hurst, H. Kahle, K. Kastens, G. Kekelidze, R. King, V. Kotzev, O. Lenk, S. Mahmoud, A. Mishin, M. Nadariya, A. Ouzounis, D. Paradissis, Y. Peter, M. Prilepin, R. Reilinger, I. Sanli, H. Seeger, A. Tealeb, M.N. Toksöz, and G. Veis (2000), Global Positioning System constraints on plate kinematics and dynamics in the eastern Mediterranean and Caucasus, J. Geophys. Res. 105, B3, 5695-5719, DOI:10.1029/1996JB900351.
McKenzie, D. (1972), Active tectonics of the Mediterranean region, Geophys. J. Roy. Astr. Soc. 30, 2, 109-185, DOI: 10.1111/j.1365-246X.1972.tb02351.x.
McKenzie, D., and D. Fairhead (1997), Estimates of the effective elastic thickness of the continental lithosphere from Bouguer and free air gravity anomalies, J. Geophys. Res. 102, B12, 27523-27552, DOI: 10.1029/97JB02481.
Peréz-Gussinyé, M., A.R. Lowry, and A.B. Watts (2007), Effective elastic thickness of South America and its implications for intercontinental deformation, Geochem. Geophys. Geosys. 8, 5, 1-22, DOI: 10.1029/2006GC001511.
Sharifi, M.A., M. Nikkhoo, and M. Abbaszadeh (2009), A new approach for evaluation of global geopotential models; case study: Iran, J. Space Earth Phys. 36, 4, 2011.
Swain, C.J., and J.F. Kirby (2003), The effect of ‘noise’ on estimates of the elastic thickness of the continental lithosphere by the coherence method, Geophys. Res. Lett. 30, 11, 1574, DOI: 10.1029/2003GL017070.
Talebian, M., and J. Jackson (2002), Offset on the Main Recent Fault of NW Iran and implications for the late Cenozoic tectonics of the Arabia–Eurasia collision zone, Geophys. J. Int. 150, 2, 422-439, DOI: 10.1046/j.1365-246X.2002.01711.x.
Tassara, A., C. Swain, R. Hackney, and J. Kirby (2007), Elastic thickness structure of South America estimated using wavelets and satellite-derived gravity data, Earth. Planet. Sci. Lett. 253, 1-2, 17-36, DOI: 10.1016/j.epsl.2006.10.008.
Tchalenko, J.S., and J. Braud (1974), Seismicity and structure of the Zagros (Iran): The main recent fault between 33 and 35 degrees N, Philos. Trans. Roy. Soc. Lond. A 277, 1262, 1-25, DOI: 10.1098/rsta.1974.0044.
Turcotte, D., and G. Schubert (1982), Geodynamics, John Wiley and Sons, Inc., New York.
Watts, A.B. (2001), Isostasy and Flexure of the Lithosphere, Cambridge University Press, Cambridge.
Kolekcja BazTech
Identyfikator YADDA bwmeta1.element.baztech-491e249b-6556-4299-93a7-aa55b8045159
Identyfikatory