PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Decoupling zeros of positive electrical circuits

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Necessary and sufficient conditions for the reachability and observability of the positive electrical circuits composed of resistors, coils, condensators and voltage sources are established. Definitions of the input-decoupling zeros, output-decoupling zeros and input-output decoupling zeros of the positive electrical circuits are proposed. Some properties of the decoupling zeros of positive electrical circuits are discussed.
Rocznik
Strony
553--568
Opis fizyczny
Bibliogr. 17 poz., rys., wz.
Twórcy
autor
  • Faculty of Electrical Engineering, Białystok University of Technology Wiejska 45D, 15-351 Białystok, kaczorek@isep.pw.edu.pl
Bibliografia
  • [1] Antsaklis P.J., Michel A.N., Linear Systems. Birkhauser, Boston (2006).
  • [2] Farina L., Rinaldi, S. Positive Linear Systems; Theory and Applications. J. Wiley, New York (2000).
  • [3] Kaczorek T., Positive 1D and 2D systems. Springer Verlag, London (2001).
  • [4] Kaczorek T., Linear Control Systems. Vol. 1, J. Wiley, New York 1993.
  • [5] Kaczorek T., Decomposition of the pairs (A,B) and (A,C) of the positive discrete-time linear systems. Archives of Control Sciences 20(3): 341-361 (2010).
  • [6] Kaczorek T., Decoupling zeros of positive discrete-time linear systems. Circuit and Systems 1: 41-48 (2010).
  • [7] Kaczorek T., Positivity and reachability of fractional electrical circuits. Acta Mechanicata et Automatica 5(2): 42-51 (2011).
  • [8] Kailath T., Linear Systems. Prentice-Hall, Englewood Cliffs, New York (1980).
  • [9] Kalman R.E., Mathematical Descriptions of Linear Systems. SIAM J. Control 1: 152-192 (1963).
  • [10] Kalman R.E., On the General Theory of Control Systems. Proc. Of the First Intern. Congress on Automatic Control, Butterworth, London, pp. 481-493 (1960).
  • [11] Rosenbrock H.H., Comments on poles and zeros of linear multivariable systems: a survey of the algebraic geometric and complex variable theory. Intern. J. Control. 26(1): 157-161 (1977).
  • [12] Rosenbrock H.H., State-Space and Multivariable Theory. J. Wiley, New York (1970).
  • [13] Tokarzewski J., Finite zeros of positive linear discrete-time systems. Bull. Pol. Acad. Sci. Tech. 59(3): 287-292 (2011).
  • [14] Tokarzewski J., Finite zeros of positive continuous-time systems. Bull. Pol. Acad. Sci. Tech. 59(3): 293-298 (2011).
  • [15] Tokarzewski J., Finite Zeros in Discrete-Time Control Systems. Springer-Verlag, Berlin (2006).
  • [16] Wolovich W.A., Linear Multivariable Systems, Springer-Verlag New York (1974).
  • [17] Valcher M.E., On the initial stability and asymptotic behavior of 2D positive systems, IEEE Trans. on Circuits and Systems – I, 44(7): 602-613 (1977).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4885af21-acc8-4e1d-9b39-ff0b15caa9cf
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.