PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

RCAFE Based Numerical Model of Dynamic Recrystallization

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The main goal of the paper is dedicated to proper arrangement of the Finite Element (FE) and Random Cellular Automata (RCA) methods in order to develop numerical model of dynamic recrystallization (DRX) and therefore to simulate microstructure morphology changes during plastic deformation at elevated temperatures. In the approach, Finite Element solver provides information on equivalent stress and strain fields after subsequent time steps. Then these data are transferred to RCA model, which is responsible for evaluation of corresponding microstructure morphology evolution and dislocation density changes. Finally, information from the CA part is send back to the FE solver as an input for the next time step. As a result, a fully coupled RCAFE model to simulate progress of DRX is established. The present paper is directly focused on development of algorithms and methods to transfer input/output data between both FE and RCA models. The developed communication protocol is based on the Abaqus VUMAT subroutine. Examples of obtained results from the developed model are also presented to highlight its potential.
Słowa kluczowe
Rocznik
Strony
52--60
Opis fizyczny
Bibliogr. 13 poz.., rys.
Twórcy
autor
  • AGH University of Science and Technology, Department of Applied Computer Science and Modelling, Krakow, Poland
autor
  • AGH University of Science and Technology, Department of Applied Computer Science and Modelling, Krakow, Poland
  • AGH University of Science and Technology, Department of Applied Computer Science and Modelling, Krakow, Poland
autor
  • AGH University of Science and Technology, Department of Applied Computer Science and Modelling, Krakow, Poland
Bibliografia
  • [1] DOHERTY R.D., HUGHES D.A. et al., 1997, Current issues in recrystallization: a review, Materials Science and Engineering A, 238, 219-274.
  • [2] FEI C., ZHENSHAN C., JUAN L., WEN C., SHIJIA C., 2010, Mesoscale simulation of the high-temperature austenitizing and dynamic recrystallization by coupling a cellular automaton with a topology deformation technique, Materials Science and Engineering A, 527, 5539-5549.
  • [3] FEI C., KE Q., ZHENSHAN C., XINMIN L., 2014, Modeling the dynamic recrystallization in austenitic stainless steel using cellular automaton method, Computational Materials Science, 83, 331-340.
  • [4] HALLBERG H., WALLIN M., RISTINMAA M., 2010, Simulation of discontinuous dynamic recrystallization in pure Cu using a probabilistic cellular automaton, Computational Materials Science, 49, 25-34.
  • [5] MADEJ L., SIERADZKI L., SITKO M., PERZYNSKI K., RADWANSKI K., KUZIAK R., 2013, Multi scale cellular automata and finite element based model for cold deformation and annealing of a ferritic-pearlitic microstructure, Computational Materials Science, 77, 172-181.
  • [6] MCQUEEN H., 2004, Development of dynamic recrystallization theory, Materials Science and Engineering A, 387-389, 203-208.
  • [7] NAMIN X., CHENGWU Z., DIANZHONG L., YIYI L., 2008, A simulation of dynamic recrystallization by coupling a cellular automaton method with a topology deformation technique, Computational Materials Science, 41, 366-374.
  • [8] PIETRZYK M., JEDRZEJEWSKI J., 2001, Identification of parameters in the history dependent constitutive model for steels, CIRP Annals - Manufacturing Technology, 50, 161-164.
  • [9] SITKO M., MADEJ L., 2014, Development of dynamic recrystallization model based on Cellular Automata approach, Key Engineering Materials, 622-623, 617-624.
  • [10] SITKO M., MADEJ L., PIETRZYK M., 2015, Validation of cellular automata model of dynamic recrystallization, Key Engineering Materials, 651-653, 581-586.
  • [11] SZYNDLER J., MADEJ L., 2014, Effect of number of grains and boundary conditions on digital material representation in deformation under plain strain, Archives of Civil and Mechanical Engineering, 14, 360-369.
  • [12] YAZDIPOUR N., C.H.J. DAVIES, P.D. HODGSON, 2008, Microstructural modeling of dynamic recrystallization using irregular cellular automata, Computational Materials Science, 44, 566-576.
  • [13] ZAHIRI S.H., HODGSON P.D., 2004, The static, dynamic and metadynamic recrystallisation of a medium carbon steel, Materials Science and Technology, 20, 458-464.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4825a2b3-8915-4006-8a65-454a25234c95
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.