Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Experimental investigation on effects of machining parameters on the performance of Ti-6Al-4V micro rotary parts fabricated by LS-WEDT

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
The low speed wire electrical discharge turning (LS-WEDT) is firstly proposed to fabricate the Ti-6Al-4V micro rotary workpiece in this study. The surface quality, sub-surface damages and machining efficiency of LS-WEDT process are discussed. The single factor experiments and orthogonal experiments are respectively conducted to analyze effects of speed parameters and peak current on surface roughness (Ra), material removal rate (MRR), surface morphology and the white layer of the TC4 micro rotary workpiece machined by LS-WEDT. Experimental results indicated that the most important factors affecting the Ra and MRR in LS-WEDT respectively are the peak current and feeding speed, and the rotating speed and feeding speed have significant interactive effect on Ra and MRR. Besides, the low feeding speed can cause surface burning and the high rotating speed will elongate craters. Furthermore, the surface oxidation of TC4 workpiece machined by LS-WEDT is far more serious than the surface alloying and Ti3O and Ti6O can be detected on the machined surface. Moreover, the serrated white layer can be observed and gradually becomes continuous and thin with the decrease of peak current. Finally, large amounts of oxygen and less copper elements can be detected on the top of the white layer and longitudinal cracks.
Opis fizyczny
Bibliogr. 33 poz., rys., tab., wykr.
  • Northeastern University, Shenyang, China
  • Northeastern University, Shenyang, China
  • Northeastern University, Shenyang, China
  • Northeastern University, Shenyang, China
  • Northeastern University, Shenyang, China
  • [1] D. Garbiec, P. Siwak, A. Mróz, Effect of compaction pressure and heating rate on microstructure and mechanical properties of spark plasma sintered Ti6Al4V alloy, Arch. Civ. Mech. Eng. 16 (4) (2016) 702–707.
  • [2] L. Gu, L. Li, W. Zhao, K.P. Rajurkar, Electrical discharge machining of Ti6Al4V with a bundled electrode, Int. J. Mach. Tools Manuf. 53 (2012) 100–106.
  • [3] Y.K. Gao, Surface modification of TC4 titanium alloy by high current pulsed electron beam (HCPEB) with different pulsed energy densities, J. Alloys Compd. 572 (17) (2013) 180–185.
  • [4] J.R. Davis, ASM Handbook Machining V16: Machining, ASM International Press, 1989. p. 17.
  • [5] M.D. Moses, M.P. Jahan, Micro-EDM machinability of difficult-to-cut Ti-6Al-4V against soft brass, Int. J. Adv. Manuf. Technol. 81 (5) (2015) 1345–1361.
  • [6] S.L. Chen, S.F. Hsieh, H.C. Lin, M.H. Lin, J.S. Huang, Electrical discharge machining of a NiAlFe ternary shape memory alloy, J. Alloys Compd. 464 (1–2) (2008) 446–451.
  • [7] T. Muthuramalingam, B. Mohan, Performance analysis of iso current pulse generator on machining characteristics in EDM process, Arch. Civ. Mech. Eng. 14 (3) (2014) 383–390.
  • [8] E. Aligiri, S.H. Yeo, P.C. Tan, A new tool wear compensation method based on real-time estimation of material removal volume in micro-EDM, J. Mater. Process. Technol. 210 (15) (2010) 2292–2303.
  • [9] D.S. Prasad, C. Shoba, K.R. Varma, A. Khurshid, Influence of wire EDM parameters on the damping behaviour of A356.2 aluminum alloy, J. Alloys Compd. 646 (2015) 257–263.
  • [10] O.A.A. Zeid, On the effect of electro discharge machining parameters on the fatigue life of AISI D6 tool steel, J. Mater. Process. Technol. 68 (1997) 27–32.
  • [11] M.A.M. Daud, M.Z. Omar, J. Syarif, Z. Sajuri, Effect of wire- EDM cutting on fatigue strength of AZ61 magnesium alloy, J. Mek. 30 (2010) 68–76.
  • [12] A. Ntasi, W.D. Mueller, G. Eliades, S. Zinelis, The effect of electro discharge machining (EDM) on the corrosion resistance of dental alloys, Dent. Mater. 26 (12) (2010) 237–245.
  • [13] S.F. Hsieh, A.W.J. Hsue, S.L. Chen, M.H. Lin, K.L. Ou, P.L. Mao, EDM surface characteristics and shape recovery ability of Ti35.5Ni48.5Zr16 and Ni60Al24.5Fe15.5 ternary shape memory alloys, J. Alloys Compd. 571 (18) (2013) 63–68.
  • [14] A. Hasçalık, U. Çaydaş, Electrical discharge machining of titanium alloy (Ti-6Al-4V), Appl. Surf. Sci. 253 (22) (2007) 9007– 9016.
  • [15] F.L. Amorim, L.J. Stedile, R.D. Torres, P.C. Soares, C.A.H. Laurindo, Performance and surface integrity of Ti6Al4V after sinking EDM with special graphite electrodes, J. Mater. Eng. Perform. 23 (2014) 1480–1488.
  • [16] L. Li, L. Feng, X. Bai, Z.Y. Li, Surface characteristics of Ti-6Al- 4V alloy by EDM with Cu-Sic composite electrode, Appl. Surf. Sci. 388 (8) (2016) 546–550.
  • [17] F. Han, J. Jiang, D. Yu, Influence of machining parameters on surface roughness in finish cut of WEDM, Int. J. Adv. Manuf. Technol. 34 (5) (2007) 538–546.
  • [18] A. Srivastava, A.R. Dixit, S. Tiwari, Experimental investigation of wire EDM process parameters on aluminum metal matrix composite Al2024/SiC, Int. J. Adv. Res. Innov. 2 (511) (2014) 511–515.
  • [19] P. Shandilya, P.K. Jain, N.K. Jain, Parametric optimization during wire electrical discharge machining using response surface methodology, Proc. Eng. 38 (5) (2012) 2371–2377.
  • [20] A. Giridharan, G.L. Samuel, Analysis on the effect of discharge energy on machining characteristics of wire electrical discharge turning process, Proc. I. Mech. E. Part B: J. Eng. Manuf. 230 (11) (2016) 2064–2081.
  • [21] M.J. Haddad, A.F. Tehrani, Material removal rate (MRR) study in the cylindrical wire electrical discharge turning (CWEDT) process, J. Mater. Process. Technol. 199 (1–3) (2008) 369–378.
  • [22] S.A. Krishnan, G.L. Samuel, Multi-objective optimization of material removal rate and Ra in wire electrical discharge turning, Int. J. Adv. Manuf. Technol. 67 (9) (2013) 2021–2032.
  • [23] V. Janardhan, G.L. Samuel, Pulse train data analysis to investigate the effect of machining parameters on the performance of wire electro discharge turning (WEDT) process, Int. J. Mach. Tools Manuf. 50 (9.) (2010) 775–788.
  • [24] M.H.J. Sarand, M.R. Shabgard, Investigation of the effect of thermal diffusivity coefficient of tool material on electrode-tool wear in the EDM process, Arch. Civ. Mech. Eng. 15 (4) (2015) 806–821.
  • [25] Y.D. Gong, Y. Sun, X.L. Wen, C. Wang, Q. Gao, Experimental study on surface integrity of Ti-6Al-4V machined by LS-WEDM, Int. J. Adv. Manuf. Technol. 88 (1–4) (2017) 197–207.
  • [26] Y.H. Guu, T.K. Hou, Effect of machining parameters on surface textures in EDM of Fe-Mn-Al alloy, Mater. Sci. Eng. A 466 (1–2) (2007) 61–67.
  • [27] H.T. Lee, T.Y. Tai, Relationship between EDM parameters and surface crack formation, J. Mater. Process. Technol. 142 (3) (2003) 676–683.
  • [28] Y. Zhang, Y. Liu, R. Ji, B. Cai, Study of the recast layer of a surface machined by sinking electrical discharge machining using water-in-oil emulsion as dielectric, Appl. Surf. Sci. 257 (14) (2015) 5989–5997.
  • [29] E. Weingärtner, K. Wegener, F. Kuster, Wire electrical discharge machining applied to high-speed rotating workpieces, J. Mater. Process. Technol. 212 (6) (2012) 1298– 1304.
  • [30] D.J. Whitehouse, Handbook of Surface Metrology, Institute of Physics, Bristol/Philadelphia, 1994.
  • [31] ASME B46.1-1995, Surface Texture (Surface Roughness, Waviness, and Lay), An American National Standard, New York, 1996.
  • [32] Y.D. Gong, Y. Sun, X.L. Wen, Y.G. Zhou, Y. Liu, Experimental study on accuracy and surface quality of TC2 in LS-WEDM multiple cuts, J. Braz. Soc. Mech. Sci. Eng. 38 (8) (2016) 2421– 2433.
  • [33] N. Tosun, C. Cogun, G. Tosun, A study on kerf and material removal rate in wire electrical discharge machining based on Taguchi method, J. Mater. Process. Technol. 152 (3) (2004) 316–322.
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018)
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.