Narzędzia help

Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
first previous next last
cannonical link button

http://yadda.icm.edu.pl:80/baztech/element/bwmeta1.element.baztech-47ba29f2-c15a-4f6b-9ee0-e2ac06f0094e

Czasopismo

Demonstratio Mathematica

Tytuł artykułu

Common fixed point theorems under contractive conditions of integral type in symmetric spaces

Autorzy Merghadi, F.  Godet-Thobie, C. 
Treść / Zawartość http://www.degruyter.com/view/j/dema
Warianty tytułu
Języki publikacji EN
Abstrakty
EN The purpose of this paper is to prove common fixed point theorems for a family of mappings in symmetric spaces using the property (E.A) and weak compatibility or occasionally weak compatibility. Our results extend some recent results.
Słowa kluczowe
PL przestrzeń metrczna   przestrzeń symetryczna   odwzorowanie zgodne   wspólny punkt stały  
EN metric space   symmetric space   weakly compatible mapping   occasionally weakly compatible mappings   common fixed point  
Wydawca De Gruyter
Czasopismo Demonstratio Mathematica
Rocznik 2013
Tom Vol. 46, nr 4
Strony 757--780
Opis fizyczny Bibliogr. 33 poz.
Twórcy
autor Merghadi, F.
autor Godet-Thobie, C.
  • Université de Bretagne Occidentale, Laboratoire de Mathématiques de Brest, Unité CNRS: UMR 6205 Avenue Victor Le Gorgeu, CS 93837, F-29238 Brest Cedex 3 France, christiane.godet-thobie@univ-brest.fr
Bibliografia
[1] M. Aamri, D. El Moutawakil, Some new common fixed point theorems under strict contractive conditions, J. Math. Anal. Appl. 270(1) (2002), 181–188.
[2] M. Aamri, D. El Moutawakil, Common fixed points under contractive conditions in symmetric spaces, Appl. Math. E-Notes 3 (2003), 156–162.
[3] M. A. Al-Thagafi, N. Shahzad, Generalized I-nonexpansive selfmaps and invariant approximations, Acta Math. Sinica 24(5) (2008), 867–876.
[4] A. Aliouche, A common fixed point theorem for weakly compatible mappings in symmetric spaces satisfying a contractive condition of integral type, J. Math. Anal. Appl. 322(2) (2006), 796–802.
[5] A. Aliouche, Common fixed point theorems via an implicit relation and new properties, Soochow J. Math. 33(4) (2007), 593–601.
[6] I. Altun, D. Turkoglu, B. Rhoades, Fixed points of weakly compatible mappings satisfying a general contractive condition of integral type, Fixed Point Theory and Applications., Volume 2007 (2007), Article ID 17301, 9 pages.
[7] A. Branciari, A fixed point theorem for mappings satisfying a general contractive condition of integral type, Int. J. Math. Math. Sci. 29 (2002), 531–536.
[8] A. Djoudi, A. Aliouche, A general common fixed point theorems for reciprocally continuous mappings satisfying an implicit relation, Austral. J. Math. Anal. Appl. 3 (2006), 1–7.
[9] A. Djoudi, A. Aliouche, Common fixed point theorems of Gregus type for weakly compatible mappings satisfying contractive conditions of integral type, J. Math. Anal. Appl. 329(1) (2007), 31–45.
[10] A. Djoudi, F. Merghadi, Common fixed point theorems for maps under a contractive condition of integral type, J. Math. Anal. Appl. 341(2) (2008), 953–960.
[11] U. C. Gairola, A. S. Rawat, A fixed point theorem for integral type inequality, Int. J. Math. Anal. 2(15) (2008), 709–712.
[12] M. Imdad, J. Ali, L. Khan, Coincidence and fixed points in symmetric spaces under strict conditions, J. Math. Anal. Appl. 320 (2006), 352–360 and 329 (2009), 752.
[13] M. Imdad, J. Ali, Jungck’s common fixed point theorem and E.A. property, Acta Math. Sinica, English series 24(1) (2008), 87–94.
[14] K. Jha, Common fixed point for weakly compatible maps in metric space, Kathmandu. U. J. S., Engineering and Technology 1(4) (2007).
[15] G. Jungck, Compatible mappings and common fixed points, Internat. J. Math. Math. Sci. 9(4) (1986), 771–779.
[16] G. Jungck, Common fixed points for noncontinuous nonself maps on nonmetric spaces, Far East J. Math. Sci. 4(2) (1996), 199–215.
[17] G. Jungck, B. E. Rhoades, Some fixed point theorems for compatible maps, Internat. J. Math. Math. Sci. 16(3) (1993), 417–428.
[18] G. Jungck, B. E. Rhoades, Fixed point theorems for occasionally weakly compatible mappings, Fixed Point Theory 7(2) (2006), 287–296 and 9(1) (2008), 383–384.
[19] J. K. Kohli, S. Vashistha, Common fixed point theorems for compatible and weakly compatible mappings satisfying general contractive type conditions, Stud. Cercet. Ştiinţ. Ser. Mat. Univ. Bacău 16 (2006), 33–42.
[20] R. P. Pant, Common fixed points of noncommuting mappings, J. Math. Anal. Appl. 188 (1994), 436–440.
[21] R. P. Pant, Common fixed points for four mappings, Bull. Calcutta Math. Soc. 9 (1998), 281–286.
[22] R. P. Pant, Common fixed point theorem under a new condition, Indian J. Pure. Appl. Math. 30(2) (1999), 147–152.
[23] R. P. Pant, A new common fixed point principle, Soochow. J. Math. 27(3) (2001), 287–297.
[24] H. K. Pathak, R. R. Lopez, R. K. Verma, A common fixed point theorem using implicit relation and property (E.A) in metric spaces, Filomat 21(2) (2007), 211–234.
[25] H. K. Pathak, R. Tiwari, M. S. Khan, A common fixed point theorem satisfying integral type implicit relations, Appl. Math. E-Notes 7 (2007), 222–228.
[26] H. K. Pathak, R. K. Verma, Weakly compatible mappings and Altman type contraction, Filomat 22(1) (2008), 31–44.
[27] V. Popa, A general fixed point theorem for weakly compatible mappings in compact metric spaces, Turkish J. Math. 25 (2001), 465–474.
[28] B. E. Rhoades, Two fixed point theorems for mappings satisfying a general contractive condition of integral type, Int. J. Math. Math. Sci. 63 (2003), 4007–4013.
[29] K. Sastry, I. Murthy, Common fixed points of two partially commuting tangential selmaps on a metric space, J. Math. Anal. Appl. 250 (2000), 731–734.
[30] S. Sessa, On a weak commutativity condition of mappings in fixed point considerations, Publ. Inst. Math. (Beograd) (N.S.) 32(46) (1982), 149–153.
[31] S. L. Singh, S. N. Mishra, Remarks on recent fixed point theorems and applications to integral equations, Demonstratio Math. 34 (2001), 847–857.
[32] P. Vijayaraju, B. E. Rhoades, R. Mohanraj, A fixed point theorem for a pair of maps satisfying a general contractive condition of integral type, Int. J. Math. Math. Sci. 15 (2005), 2359–2364.
[33] W. A. Wilson, On semi-metric spaces, Amer. J. Math. 53 (1931), 361–373.
Kolekcja BazTech
Identyfikator YADDA bwmeta1.element.baztech-47ba29f2-c15a-4f6b-9ee0-e2ac06f0094e
Identyfikatory