Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Języki publikacji
Abstrakty
Diverse strategies for identifying and finding the damages in structures have been continuously engaging to originators within the field. Due to the direct connection between the firmness, characteristic frequency, and mode shapes within the structure, the modular parameters may well be utilized for recognizing and finding the damages in structures. In current consider, a modern damage marker named Damage Localization Index (DLI) is applied, utilizing the mode shapes and their derivative. A finite element model of a frame with twenty and thirty components has been utilized, separately. The numerical model is confirmed based on experimental information. The indicator has been explored for the damaged components of a frame with one bay. The results have been compared with those of the well-known index CDF. To demonstrate the capability and exactness of the proposed method, the damages with low seriousness at different areas of the structures are explored. The results are investigated in noisy condition, considering 3% and 5% noise on modal data. The outcomes show the high level of accuracy of the proposed method for identifying the location of the damaged elements in frames.
Czasopismo
Rocznik
Tom
Strony
633--643
Opis fizyczny
Bibliogr. 24 poz., il., tab.
Twórcy
autor
- Department of Civil Engineering, University of Mazandaran, Babolsar, Iran
autor
- Department of Civil Engineering, University of Mazandaran, Babolsar, Iran
autor
- Department of Civil Engineering, University of Mazandaran, Babolsar, Iran
autor
- Department of Mechanical and Industrial Engineering,University of Minnesota, Duluth, United States of America
Bibliografia
- [1] J. Malesza, C. Miedziałowski, “Analytical Models Tracing Deformation of Wood-Framed Walls During Vertical Transport”, Archives of Civil Engineering, 2021, vol. 67, no. 1, pp. 131-146, DOI: 10.24425/ace.2021.136465.
- [2] A. Bahrami, M. Yavari, “Analysis of Composite Shear Walls with a Gap Between Reinforced Concrete Wall and Steel Frame”, Archives of Civil Engineering, 2020, vol. 66, no. 1, pp. 41-53, DOI: 10.24425/ace.2020.131773.
- [3] D. Mrówczyński, T. Gajewski, T. Garbowski, “Application of the generalized nonlinear constitutive law in 2D shear flexible beam structures”, Archives of Civil Engineering, 2021, vol. 67, no. 3, pp. 157-176, DOI: 10.24425/ace.2021.138049.
- [4] A. Halicka, A. Ostańska, “The role of structural analyses and queries in recognizing damage causes and selecting remedies in historic buildings: case of the Dominican monastery in Lublin”, Archives of Civil Engineering, 2022, vol. 68, no. 1, pp. 413-430, DOI: 10.24425/ace.2022.140176.
- [5] M. Klun, A. Kryžanowski, “Dynamic monitoring as a part of structural health monitoring of dams”, Archives of Civil Engineering,2022, vol. 68, no. 1, pp. 569-578, DOI: 10.24425/ace.2022.140186.
- [6] S. Woliński, T. Pytlowany, “Proposal for application of risk analysis to assess robustness of floor slabs pre-stressed with unbonded tendoms”, Archives of Civil Engineering, 2022, vol. 68, no. 1, pp. 241-253, DOI: 10.24425/ace.2022.140166.
- [7] M. Dudek, J. Rusek, K. Tajduś, L. Słowik, “Analysis of steel industrial portal frame building subjected to loads resulting from land surface uplift following the closure of underground mines”, Archives of Civil Engineering, 2021, vol. 67, no. 3, pp. 283-298, DOI: 10.24425/ace.2021.138056.
- [8] K. Wilde, D. Bruski, S. Burzyński, et al., “On analysis of double-impact test of 1500-kg vehicle into w-beam guardrail system”, Archives of Civil Engineering, 2021, vol. 67, no. 2, pp. 101-115, DOI: 10.24425/ace.2021.137157.
- [9] M. Dilena, M.F. Dell’Oste, A. Morassi, “Detecting cracks in pipes filled with fluid from changes in natural frequencies”, Mechanical Systems and Signal Processing, 2011, vol. 25, no. 8, pp. 3186-3197, DOI: 10.1016/j.ymssp.2011.04.013.
- [10] M. Torbol, “Real-Time Frequency-Domain Decomposition for Structural Health Monitoring Using General-Purpose Graphic Processing Unit”, Computer-Aided Civil and Infrastructure Engineering, 2014, vol. 29, no. 9, pp. 689-702, DOI: 10.1111/mice.12097.
- [11] J.M. Dulieu-Barton, W.J. Staszewski, K. Worden, Structural Damage Assessment Using Advanced Signal Processing Procedures: DAMAS ’97: Proceedings of the International Conference on Damage Assessment of Structures (DAMAS ’97). Sheffield: Sheffield Academic Press, 1997.
- [12] D.V. Jauregui, C.R. Farrar, “Damage identification algorithms applied to numerical modal data from a bridge”, in 14. International Modal Analysis Conference. Dearborn, MI, 1996.
- [13] N. Navabian, M. Bozorgnasab, R. Taghipour, O. Yazdanpanah, “Damage identification in plate-like structure using mode shape derivatives”, Archive of Applied Mechanics, 2016, vol. 86, pp. 819-830, DOI: 10.1007/s00419-015-1064-x.
- [14] N. Navabian, R. Taghipour, M. Bozorgnasab, J. Ghasemi, “Damage evaluation in plates using modal data and firefly optimisation algorithm”, International Journal of Structural Engineering, 2018, vol. 9, no. 1, pp. 50-69, DOI: 10.1504/IJSTRUCTE.2018.090750.
- [15] M.M. Fayyadh, H.A. Razak, Z. Ismail, “Combined modal parameters-based index for damage identification in a beamlike structure: theoretical development and verification”, Archives of Civil and Mechanical Engineering, 2011, vol. 11, no. 3, pp. 587-609, DOI: 10.1016/S1644-9665(12)60103-4.
- [16] A. Tomaszewska, M. Szafrański, “Study on applicability of two modal identification techniques in irrelevant cases”, Archives of Civil and Mechanical Engineering, 2020, vol. 20, DOI: 10.1007/s43452-020-0014-8.
- [17] H. Hasni, A.H. Alavi, P. Jiao, N. Lajnef, “Detection of fatigue cracking in steel bridge girders: A support vector machine approach”, Archives of Civil and Mechanical Engineering, 2017, vol. 17, no. 3, pp. 609-622, DOI: 10.1016/j.acme.2016.11.005.
- [18] D. Donskoy, D. Liu, “Vibro-acoustic modulation baseline-free non-destructive testing”, Journal of Sound and Vibration, 2021, vol. 492, DOI: 10.1016/j.jsv.2020.115808.
- [19] C.R. Farrar, S.W. Doebling, D.A. Nix, “Vibration-based structural damage identification”, Philosophical Transactions: Mathematical, Physical and Engineering Sciences, 2001, vol. 359, no. 1778, pp. 131-149, DOI: 10.1098/rsta.2000.0717.
- [20] M.M. Fayyadh, H.A. Razak, “Weighting method for modal parameter based damage detection algorithms”, International Journal of Physical Sciences, 2011, vol. 6, no. 20, pp. 4816-4825, https://www.academia.edu/1029057/Weighting_Method_for_Modal_Parameter_Based_Damage_Detection_Algorithms.
- [21] R. Taghipour, M.R. Nashta, M. Bozorgnasab, H. Mirgolbabaei, “A new index for damage identification in beam structures based on modal parameters”, Archive of Mechanical Engineering, 2021, vol. 68, no. 4, pp. 375-394, DOI: 10.24425/ame.2021.138397.
- [22] S.S. Rao, The Finite Element Method in Engineering, 6th ed. Elsevier, 2018.
- [23] A. Esfandiari, F. Bakhtiari-Nejad, A. Rahai, “Theoretical and experimental structural damage diagnosis method using natural frequencies through an improved sensitivity equation”, International Journal of Mechanical Sciences, 2013, vol. 70, pp. 79-89, DOI: 10.1016/j.ijmecsci.2013.02.006.
- [24] M.M.A. Wahab, G.D. Roeck, “Damage detection in bridges using modal curvatures: application to a real damage scenario”, Journal of Sound and Vibration, 1999, vol. 226, no. 2, pp. 217-235, DOI: 10.1006/jsvi.1999.2295.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Identyfikator YADDA
bwmeta1.element.baztech-466bfd77-4f5b-43a9-ad4a-067b31799b21