PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Finite element based prediction of deformation in sheet metal forming process

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper the sheet forming process of cylindrical drawpieces was sim-ulated based on the finite element method by the explicit approach in the pres-ence of contact conditions with isotropic and anisotropic friction. The ex-perimental and numerical results obtained in the Abaqus finite element (FE) based program are presented. The aim of the experimental study is to analyse material behaviour under deformation and in addition to use the results to verify numerical simulation results. It was found that, although, the anisotropy of resistance to friction affects the height of ears, the influence of the friction formulation is relatively small in comparison with material anisotropy. The study indicates that FE analysis with 3-node triangular shell element S3R elements ensures the best approximation of the numerical results to the real process when both material and friction anisotropy are taken into account.
Twórcy
  • Rzeszow University of Technology, Faculty of Mechanical Engineering and Aeronautics, al. Powst. Warszawy 8, 35-959 Rzeszów, kraska94@gmail.com
  • Rzeszow University of Technology, Faculty of Mechanical Engineering and Aeronautics, al. Powst. Warszawy 8, 35-959 Rzeszów, tomtrz@prz.edu.pl
Bibliografia
  • [1] Affronti, E., & Merklein, M. (2018). Analysis of the bending effects and the biaxial pre-straining in sheet metal stretch forming processes for the determination of the forming limits. International Journal of Mechanical Sciences, 138–139, 295–309. doi:10.1016/j.ijmecsci.2018.02.024
  • [2] Banabic, D. (2010). Sheet metal forming processes. Constitutive modelling and numerical simulation. Berlin Heidelberg: Springer-Verlag.
  • [3] Falsafi, J., Demirci, E., & Silberschmidt, V. V. (2016). Computational assessment of residual formability in sheet metal forming processes for sustainable recycling. International Journal of Mechanical Sciences, 119, 187–196. doi:10.1016/j.ijmecsci.2016.10.013
  • [4] Hattalli, V. L., & Srivatsa, S. R. (2018). Sheet metal forming processes – recent technological advances. Materials Today – Proceedings, 5(1), 2564–2574. doi:10.1016/j.matpr.2017.11. 040
  • [5] Hill, R. (1948). A theory of the yielding and plastic flow of anisotropic metals. Proceedings of the Royal Society A, 193, 281–297. doi:10.1098/rspa.1948.0045
  • [6] Larsson, M. (2009). Computational characterization of drawbeads: A basic modelling method for data generation. Journal of Materials Processing Technology, 209(1), 376–386. doi:10.1016/ j.jmatprotec.2008.02.009
  • [7] Li, P., He, J., Liu, Q., Yang, M., Wang, Q., Yuan, Q., & Li, Y. (2017). Evaluation of forming forces in ultrasonic incremental sheet metal forming. Aerospace Science and Technology, 63, 132–139. doi:10.1016/j.ast.2016.12.028
  • [8] Ramzi, B. H., Sebastien, T., Fabrice, R., Gemala, H., & Pierrick, M. (2017). Numerical prediction of the forming limit diagrams of thin sheet metal using SPIF tests. Procedia Engineering, 183, 113–118. doi:10.1016/j.proeng.2017.04.029
  • [9] Trzepieciński, T., & Gelgele, H. L. (2011). Investigation of anisotropy problems in sheet metal forming using finite element method. International Journal of Material Forming, 4(4), 357–369. doi:10.1007/s12289-010-0994-7
  • [10] von Mises, R. (1913). Mechanik der festen Kö¨rper im plastisch deformablen Zustand. Nachrichten von der Köngl. Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse 1913, 582–592.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-44e1861d-2f02-49d7-8992-aa52ae02cabb
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.