PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Application properties of methods for fault detection and isolation in the diagnosis of complex large-scale processes

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The survey presents a selection of the methods of the fault detection and isolation suitable to be useful for the diagnostics of the complex, large scale industrial processes. The paper focuses on these methods that have appropriately high level of potential applicability in industrial practice. The novelty of the paper relies on the discussion of the dependency of the level of knowledge about diagnosed process and recommended diagnostic approaches. Appropriate recommendations were given in the convenient form of the table.
Rocznik
Strony
571--582
Opis fizyczny
Bibliogr. 60 poz., rys., tab.
Twórcy
  • Institute of Automatic Control and Robotics, Warsaw University of Technology, 8 św. Andrzeja Boboli St., 02-525 Warszawa, Poland, jmk@mchtr.pw.edu.pl
autor
  • Institute of Automatic Control and Robotics, Warsaw University of Technology, 8 św. Andrzeja Boboli St., 02-525 Warszawa, Poland
Bibliografia
  • [1] M. Basseville and I.V. Nikiforov, Detection of Abrupt Changes – Theory and Application, Prentice-Hall, Englewood Cliffs, 1993.
  • [2] M. Blanke, M. Kinnaert, J. Lunze, and M. Staroswiecki, Diagnosis and Fault-Tolerant Control, Springer, Berlin, 2004.
  • [3] J. Chen and R. Patton, Robust Model Based Fault Diagnosis for Dynamic Systems, Kluwer Academic Publishers, Boston, 1999.
  • [4] J. Gertler, Fault Detection and Diagnosis in Engineering Systems, Marcel Dekker, Inc., New York, 1998.
  • [5] R. Isermann, Fault Diagnosis Systems. An Introduction from Fault Detection to Fault Tolerance, Springer, Berlin, 2006.
  • [6] J. Korbicz, J.M. Kościelny, Z. Kowalczuk, and W. Cholewa, Fault Diagnosis: Models, Artificial Intelligence Methods, Applications, Springer, Berlin, 2004.
  • [7] J. Korbicz and J.M. Kościelny, Modeling, Diagnostics and Process Control. Implementation in the DiaSter System, Springer, Berlin, 2010.
  • [8] J.M. Kościelny, Diagnostics of Automated Industrial Processes, Exit, Warszawa, 2001, (in Polish).
  • [9] R. Patton, P. Frank, and R. Clark, Issues of Fault Diagnosis for Dynamic Systems, Springer, Berlin, 2000.
  • [10] M. Witczak, Modelling and Estimation Strategies for Fault Diagnosis of Non-Linear Systems, From analytical to soft computing approaches, Springer, Berlin, 2007.
  • [11] J.M.F. Calado, J. Korbicz, K. Patan, R.J. Patton, and J.M.G. S´a da Costa, “Soft computing approaches to fault diagnosis for dynamic systems”, Eur. J. Control 7 (2–3), 248–286 (2001).
  • [12] P.M. Frank, “Fault diagnosis in dynamic systems via state estimations methods. A survey”, in System Fault Diagnostics, Reliability and Related Knowledge Based Approaches, eds. S.G. Tzafestas, vol. 2, D. Reidl Publishing Company, Dordrecht, 1987.
  • [13] P.M. Frank, “Fault diagnosis in dynamic systems using analytical and knowledge-based redundancy”, Automatica 26, 459–474, (1990).
  • [14] P.M. Frank and T. Marcu, “Diagnosis strategies and system: principle, fuzzy and neural approaches”, in Intelligent Systems and Interfaces, eds. H.-N Teodorescu, Kulwer, Boston, 2000.
  • [15] R. Isermann and P. Ball, “Trends in the application of modelbased fault detection and diagnosis of technical process”, Control Eng. Practice 5 (5), 709–719, (1997).
  • [16] J. Korbicz, “Robust fault detection using analytical and soft computing methods”, Bull. Pol. Ac.: Tech. 54 (1), 75–88, (2006).
  • [17] S. Leonhardt and M. Ayoubi, “Methods of fault diagnosis”, Control Eng. Practice 5 (5), 683–692 (1997).
  • [18] R.J. Patton, C.J. Lopez-Toribio, and F.J. Uppal, “Artificial intelligence approaches to fault diagnosis for dynamic systems”, Int. J. Appl. Mathematics and Computer Science 9 (3), 471–518, (1999).
  • [19] J.M. Kościelny, M. Bartyś, and M. Syfert, “Practical problems of faults isolation in complex industrial systems”, Chapter 10 in: Intelligent Information Extraction for Diagnostic Purposes, eds. Z. Kowalczuk and B. Wiszniewski, pp. 167–185, PWNT, Gdańsk, 2007.
  • [20] J.M. Kościelny and M. Syfert, “Diagnosis of industrial processes from theory and application perspectives”, 9th Workshop on Advanced Control and Diagnosis, ACD’2011 1, CD-ROM (2011).
  • [21] P.K. Andow and F.P. Lees, “Process computer alarm analysis: outline of a method based on list processing”, Trans. Instn. Chem. Eng. 53, 195–205 (1975).
  • [22] K. Plamping and P.K. Andow, “The design of process alarm systems”, Trans. Inst. MC 5 (3), 161–168 (1983).
  • [23] M. Iri, K. Aoki, E. O’Shima, and H. Matsuyama, “An algorithm for diagnosis of system failures in the chemical process”, Computers & Chemical Engineering 3, 489–493 (1979).
  • [24] J. Shiozaki, H. Matsuyama, K. Tano, and O’Shima, “Fault diagnosis of chemical processes by the use of signed directed graphs: extension to five-range patterns of abnormality”, Int. Chemical Engineering 37 (4), 651–659 (1985).
  • [25] B. Shibata, S. Tateno, Y. Tsuge, and H. Matsuyama, “Fault diagnosis of the chemical process utilizing the signed directed graph – improvement and evaluation of the diagnosis accuary”, IFAC Symp. on Fault Detection, Supervision and Safety for Technical Process – SAFEPROCESS’ 1991 2, 381–386 (1991).
  • [26] J. Montmain and L. Leyval, “Causal graphs for model based diagnosis”, IFAC Symp. Fault Detection, Supervision and Safety for Technical Process – SAFEPROCESS’94 1, 347–355 (1994).
  • [27] K. Takeda, B. Shibata, Y. Tsuge, and H. Matsuyama, “The improvement of fault diagnosis algorithm using signed directed graph”, IFAC Symp. Fault Detection, Supervision and Safety for Technical Process – SAFEPROCESS’94 1, 368–373 (1994).
  • [28] S. Tateno, B. Shibata, Y. Tsuge, and H. Matsuyama, “Optimal allocation of sensor for fault diagnosis system using signed directed graph”, IFAC Symp. Fault Detection, Supervision and Safety for Technical Process – SAFEPROCESS’94 2, 736–741 (1994).
  • [29] J.M. Kościelny and A. Ostasz, “Application of causal graph for description of diagnosed process”, 5th IFAC Symp. Fault Detection, Supervision and Safety for Technical Process – SAFEPROCESS’ 2003 2, 879–884 (2003).
  • [30] A. Ostasz, “Cause-effect graph of the process and its utilization for determining a set of residuals and diagnostic relations”, PhD Thesis, Warsaw University of Technology, Warszawa, 2006, (in Polish).
  • [31] P. Fuster-Para and A. Ligęza, “Diagnostic knowledge representation and reasoning with use of and/or/not causal graphs”, System Science 22 (3), 53–61 (1996).
  • [32] A. Ligęza and P. Fuster-Parra, “AND/OR/NOT causal graphs – a model for diagnostic reasoning”, Applied Mathematics and Computer Science 7, 185–203 (1997).
  • [33] A. Ligęza and M. Kirchner, “Diagnosis as a process of searching a cause and effect graph. Selected problems and their solutions”, 1st National Scientific-Technical Conf. Diagnostics of Industrial Processes 1, 72–75 (1996), (in Polish).
  • [34] A. Ligęza, “Functional causal graphs. Yet anpther model for diagnostic reasoning”, 3th IFAC Symp. on Fault Detection, Supervision and Safety for Technical Process – SAFEPROCESS’ 2000 2, 1102–1107 (1997). [35] A. Ligęza, “Abduction diagnostic inference for the model in the form of function causal-effect graphs”, 3rd National Scientific-Technical Conf. Diagnostics of Industrial Processes 1, 67–72 (1998), (in Polish).
  • [36] M. Khemliche, B.O. Bouamama, and H. Haffaf, “Sensor placement for component diagnosability using bond-graph”, Sensors and Actuators A: Physical 132 (2), 547–556 (2006).
  • [37] P.J. Mosterman, R. Kapadia, and G. Biswas, “Using bond graphs for diagnosis of dynamic physical systems”, Principles of Diagnosis 1, CD-ROM (1995).
  • [38] R. Isermann, “Process fault detection based on modeling and estimation. Methods – a survey”, Automatica 20 (4), 387–404 (1984).
  • [39] M. Witczak, J. Korbicz, M. Mrugalski, and R. Patton, “A GMDH neural network-based approach to robust fault diagnosis: application to the DAMADICS benchmark problem”, Control Eng. Practice 14 (6), 671–683 (2006).
  • [40] C.T. Kowalski and M. Kaminski, “Rotor fault detector of the converter-fed induction motor based on RBF neural network”, Bull. Pol. Ac.: Tech. 62 (1), 69–76, DOI: 10.2478/bpasts-2014-0008 (2014).
  • [41] K. Bartecki, “PCA-based approximation of a class of distributed parameter systems: classical vs. neural network approach”, Bull. Pol. Ac.: Tech. 60 (3), 651–660, DOI: 10.2478/v10175-012-0077-7 (2012).
  • [42] S. Leonhardt and M. Ayoubi, “Methods of fault diagnosis”, Control Eng. Practice. 5, 683–692 (1997).
  • [43] T. Hastie and R. Tibshirani, Generalized Additive Models, Chapman and Hall, London, 1990.
  • [44] Z.M. Łabęda-Grudziak, “Identification of dynamic system additive models by kdd methods”, Measurement Automation and Control 57 (3), 249–252 (2010).
  • [45] Z.M. Łabęda-Grudziak, “The use of additive regression model to generate residuals for the purpose of fault detection”, PhD Thesis, Warsaw University of Technology, Warszawa, 2011, (in Polish).
  • [46] K. Patan and J. Korbicz, “Fault detection in catalytic cracking converter by means of probability density approximation”, Engineering Applications of Artificial Intelligence 20 (7), 912–923 (2007).
  • [47] K. Patan, Artificial Neural Networks for the Modelling and Fault Diagnosis of Technical Processes, vol. 377, Lecture Notes in Control and Information Sciences, Springer, Berlin, 2008.
  • [48] K. Patan, M. Witczak, and J. Korbicz, “Towards robustness in neural network based fault diagnosis”, Int. J. Applied Mathematics and Computer Science 18 (4), 443–454 (2008).
  • [49] K. Duzinkiewicz, “Set of parameters and variables in dynamic networks by recursive algorithms with a moving measurement window”, Int. J. Applied Mathematics and Computer Science 16 (2), 209–217, (2006).
  • [50] M. Milanese, “Set membership identification of nonlinear systems”, Automatica 40 (6), 957–975 (2004).
  • [51] M. Mrugalski, “An unscented Kalman filter in designing dynamic GMDH neural networks for robust fault detection”, Int. J. Applied Mathematics and Computer Science 23, 157–169 (2013).
  • [52] M. Mrugalski, “Advanced neural network-based computational schemes for robust fault diagnosis”, in Studies in Computational Intelligence, ed. J. Kasprzyk, vol. 510, Springer International Publishing, Berlin, 2014.
  • [53] V. Puig, A. Stancu, T. Escobet, F. Nejjari, J. Quevedo, and R.J. Patton, “Passive robust fault detection using interval observers: Application to the DAMADICS benchmark problem”, Control Engineering Practice 14 (6), 621–633 (2006).
  • [54] J.M. Kościelny and M. Syfert, “Fuzzy Diagnostic Reasoning that Takes Into Account the Uncertainty of the Faults-Symptoms Relation”, Int. J. Applied Mathematics and Computer Science 16 (1), 27–35 (2006).
  • [55] J.M. Kościelny, D. Sędziak, and K. Zakroczymski, “Fuzzy logic fault isolation in large scale systems”, Int. J. Applied Mathematics and Computer Science 9, 637–652 (1999).
  • [56] J.M. Kościelny and M. Syfert, “Fuzzy logic application to diagnostics of industrial processes”, 5th IFAC Symp. Fault Detection, Supervision and Safety of Technical Processes SAFEPROCESS‘ 2003 2, 771–776, (2003).
  • [57] J.M. Kościelny, “Fault Isolation in Industrial Processes by Dynamic Table of States Method”, Automatica 31, 747–753 (1995).
  • [58] J.M. Kościelny, M. Syfert, and Ł. Tabor, “Application of knowledge about residual dynamics for fault isolation and identification”, 2nd Conf. Control and Fault-Tolerant Systems (Sys-Tol’2013 1, 275–280 (2013).
  • [59] J.M. Kościelny, M. Syfert, and Ł. Tabor, “Sequential residual design method for linear systems”, Conf. Control and Fault-Tolerant Systems SysTol’10, Nice 1–6, CD-ROM (2010).
  • [60] D. Krokavec and A. Filasov´a, “Novel fault detection criteria based on linear quadratic control performances”, Int. J. Applied Mathematics and Computer Science 22, 929–938 (2012).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-447adec0-3c5e-45a5-8709-4b3899be5a1e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.