Narzędzia help

Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
first previous next last
cannonical link button

http://yadda.icm.edu.pl:80/baztech/element/bwmeta1.element.baztech-43ce9bbb-19ee-48a1-b5ac-ada114918a52

Czasopismo

Acta of Bioengineering and Biomechanics

Tytuł artykułu

Experimental study and modelling the evolution of viscoelastic hysteresis loop at different frequencies in myocardial tissue

Autorzy Smoluk, A.  Smoluk, L.  Lisin, R.  Protsenko, Y. 
Treść / Zawartość
Warianty tytułu
Języki publikacji EN
Abstrakty
EN Our work involved experimental study of the influence of actomyosin complexes and the main structural components of the myocardial tissue – connective tissue collagen framework and cardiomyocytes – on the characteristics of viscoelastic hysteresis at different frequencies. In this paper a new method was introduced for the analysis of the viscoelastic characteristics of the force hysteresis in the isolated myocardial preparation for the assessment of mechanical energy expenditure in the tension-compression cycle. We established that basic myocardial structures have an impact on the to the characteristics of the viscoelastic hysteresis in many ways. It was shown that in rat’s myocardium cardiomyocytes one main factor that define the stiffness and viscosity of the myocardium in the physiological range of deformations, while binding of calcium ions with EGTA and calcium removal of sarcoplasmic reticulum with caffeine reduces viscoelasticity by ~30% and collagen framework is responsible for about 10% of viscoelasticity. It was revealed that in the physiological range of the hysteresis frequencies (3 to 7 Hz) expenditure of mechanical energy per unit of time increases linearly with increasing frequency. We proposed the structural and functional model that adequately describes the characteristics of the viscoelastic hysteresis in myocardial preparation in the range of strains and frequencies being under study.
Słowa kluczowe
PL histereza   wiskoelastyczność   mięsień sercowy   zależność częstotliwościowa  
EN hysteresis   viscoelastic properties   frequency dependence   myocardium   modelling  
Wydawca Oficyna Wydawnicza Politechniki Wrocławskiej
Czasopismo Acta of Bioengineering and Biomechanics
Rocznik 2017
Tom Vol. 19, nr 3
Strony 11--17
Opis fizyczny Bibliogr. 21 poz., rys., tab., wykr.
Twórcy
autor Smoluk, A.
  • Institute of Immunology and Physiology of the Ural Branch of the RAS, Ekaterinburg, Russia, justgazer@gmail.com
autor Smoluk, L.
  • Institute of Immunology and Physiology of the Ural Branch of the RAS, Ekaterinburg, Russia
autor Lisin, R.
  • Institute of Immunology and Physiology of the Ural Branch of the RAS, Ekaterinburg, Russia
autor Protsenko, Y.
  • Institute of Immunology and Physiology of the Ural Branch of the RAS, Ekaterinburg, Russia
Bibliografia
[1] J. G. Barra, R. L. Armentano, J. Levenson, E. I. Fischer, R. H. Pichel, A. Simon, Assessment of smooth muscle contribution to descending thoracic aortic elastic mechanics in conscious dogs, Circ Res, 1993, 73(6):1040-1050.
[2] J. Baxi, C. J. Barclay, C. L. Gibbs, Energetics of rat papillary muscle during contractions with sinusoidal length changes, Am J Physiol Heart Circ Physiol, 2000, 278(5):H1545-1554.
[3] H. L. Granzier, T. C. Irving, Passive Tension in Cardiac Muscle: Contribution of Collagen, Titin, Microtubules, and Intermediate Filaments, Biophysical Journal, 1995, 68(3):1027-1044.
[4] M. A. Hassan, M. Hamdi, A. Noma, The nonlinear elastic and viscoelastic passive properties of left ventricular papillary muscle of a guinea pig heart, J Mech Behav Biomed Mater, 2012, 5(1):99-109.
[5] A. Horowitz, Y. Lanir, F.C. Yin, M. Perl, I. Sheinman, R.K. Strumpf, Structural threedimensional constitutive law for the passive myocardium, J Biomech Eng, 1988, 110(3):200-207.
[6] D. E. Ingber, Tensegrity-based mechanosensing from macro to micro, Prog Biophys Mol Biol, 2008, 97(2-3):163-179.
[7] T. Itoh, H. Kuriyama, H. Suzuki, Differences and similarities in the noradrenaline- and caffeine-induced mechanical responses in the rabbit mesenteric artery, J Physiol, 1983, 337(609-629.
[8] T. Itoh, H. Kuriyama, H. Ueno, Mechanisms of the nitroglycerine-induced vasodilation in vascular smooth muscles of the rabbit and pig, J Physiol, 1983, 343(233-252.
[9] I. J. LeGrice, B. H. Smaill, L. Z. Chai, S. G. Edgar, J.B. Gavin, P. J. Hunter, Laminar structure of the heart: ventricular myocyte arrangement and connective tissue architecture in the dog, Am J Physiol, 1995, 269(2 Pt 2):H571-582.
[10] W. A. Linke, J. M. Fernandez, Cardiac titin: molecular basis of elasticity and cellular contribution to elastic and viscous stiffness components in myocardium, J Muscle Res Cell Motil, 2002, 23(5-6):483-497.
[11] W. A. Linke, V. I. Popov, G. H. Pollack, Passive and active tension in single cardiac myofibrils, Biophys J, 1994, 67(2):782-792.
[12] J. H. Omens, A. D. McCulloch, J. C. Criscione, Complex distributions of residual stress and strain in the mouse left ventricle: experimental and theoretical models, Biomech Model Mechanobiol, 2003, 1(4):267-277.
[13] H. C. Ott, T. S. Matthiesen, S.-K. Goh, L. D. Black, S. M. Kren, T. I. Netoff, D. A. Taylor, Perfusion-decellularized matrix: using nature’s platform to engineer a bioartificial heart, Nature Medicine, 2008, 14(213-221.
[14] L. Smoluk, Experimental and theoretical study of viscoelastic properties of papillary muscle: Diss. ... cand. of phys-math science. in russian, Puschino, 2011.
[15] L. Smoluk, Y. Protsenko, Modeling of viscoelastic properties of isolated myocardial tissue samples at different levels: cardiomyocytes and trabeculae, Biophysical Journal, 2010, 98(3):555a.
[16] L. Smoluk, Y. Protsenko, Viscoelastic properties of the papillary muscle: experimental and theoretical study, Acta Bioeng Biomech, 2012, 14(4):37-44.
[17] L. T. Smoluk, Y. L. Protsenko, Mechanical properties of passive myocardium: experiment and mathematical model, Biophysics, 2010, 55(5):796-799.
[18] S. U. Sys, G.W. De Keulenaer, D. L. Brutsaert, Reappraisal of the multicellular preparation for the in vitro physiopharmacological evaluation of myocardial performance, Adv Exp Med Biol, 1998, 453(441-450.
[19] M. W. Urban, C. Pislaru, I. Z. Nenadic, R. R. Kinnick, J. F. Greenleaf, Measurement of viscoelastic properties of in vivo swine myocardium using lamb wave dispersion ultrasound vibrometry (LDUV), IEEE Trans Med Imaging, 2013, 32(2):247-261.
[20] R. Yamasaki, M. Berri, Y. Wu, K. Trombitas, M. McNabb, M. S. Kellermayer, C. Witt, D. Labeit, S. Labeit, M. Greaser, H. Granzier, Titin-actin interaction in mouse myocardium: passive tension modulation and its regulation by calcium/S100A1, Biophys J, 2001, 81(4):2297-2313.
[21] J. Yao, V. D. Varner, L. L. Brilli, J. M. Young, L.A. Taber, R. Perucchio, Viscoelastic material properties of the myocardium and cardiac jelly in the looping chick heart, J Biomech Eng, 2012, 134(2):024502.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Kolekcja BazTech
Identyfikator YADDA bwmeta1.element.baztech-43ce9bbb-19ee-48a1-b5ac-ada114918a52
Identyfikatory
DOI 10.5277/ABB-00725-2016-02