PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The influence of the cumulated deformation energy in the measurement by the DSI method on the selected mechanical properties of bone tissues

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: The goal of the study was to determine the influence of DSI test conditions, i.e. loading/ unloading rates, hold time, the value of the maximum loading force on selected mechanical properties of trabecular bone tissue. Methods: The test samples were resected from a femoral head of a patient qualified for a hip replacement surgery. During the DSI tests hardness (HV, HM, HIT) and elastic modulus (EIT) of trabecular bone tissue were measured using the Micro Hardness Tester (MHT, CSEM). Results: The analysis of the results of measurements and the calculations of total energy, i.e. elastic and inelastic (Wtotal,Welastic,Winelastic) and those of the parameters of hardness and elasticity made it possible to assess the impact of the process parameters (loading velocity, force and hold time) on mechanical properties of bone structures at a microscopic level. Conclusions: The coefficient k dependent on the ratio EIT / HIT and on the stored energy (ΔW = Wtotal- Welastic) is a measure of the material reaction to the loading and the deformation of tissue.
Rocznik
Strony
89--91
Opis fizyczny
Bibliogr. 30 poz., rys., tab., wykr.
Twórcy
autor
  • Institute of Precision Mechanics, Warsaw, Poland
  • Institute of Mechanics and Printing, Warsaw University of Technology, Poland
Bibliografia
  • [1] Cheng Y.T., Cheng C.M., Relationships between initial unloading slope, contact depth, and mechanical properties for conical indentation in linear viscoelastic solids, J. Mater. Res. 2005, 20, 1046–1053.
  • [2] Cheng Y.T., Cheng C.M., Relationships between hardness, elastic modulus, and the work of indentation, Appl. Phys. Lett., 1998, 73(5):614-616.
  • [3] Coutts L.V., Jenkins T., Li T., Dunlop D.G., Oreffo R.O., Cooper C., Harvey N.C., Thurner P. J., Variability in reference point microindentation and recommendations for testing cortical bone: Location, thickness and orientation heterogeneity, J. Mech. Behav. Biomed. Mater., 2015, 46:292-304
  • [4] Cowin S.C., Doty S.B., Tissue Mechanics, Springer, 2007.
  • [5] Dall'Ara E., Grabowski P., Zioupos P., Viceconti M., Estimation of local anisotropy of plexiform bone: Comparison between depth sensing micro-indentation and Reference Point Indentation, J. Biomech., 2015, 48:4073–4080.
  • [6] Demiral M., Abdel-Wahab A., Silberschmidt V., A numerical study on indentation properties of cortical bone tissue: Influence of anisotropy, Acta Bioeng. Biomech., 2015, 17 (2):3-14
  • [7] Demirci N., Tönük E., Non-integer viscoelastic constitutive law to model soft biological tissues to in-vivo indentation, Acta Bioeng. Biomech., 2014, 16(4):13-21
  • [8] Gibson R.F., A review of recent research on nanoindentation of polymer composites and their constituents, Compos. Sci. Technol., 2014, 105, 51–65.
  • [9] Goh S.M., Charalambides M.N., Williams J.G., Indentation testing of mild cheddar cheese, J. Texture. Stud., 2005,36:459-477.
  • [10] J.L. Bucaille J.L., Stauss S., Felder E., Michler J., Determination of plastic properties of metals by instrumented indentation using different sharp indenters, Acta Mater., 2003, 51, 1663–1678.
  • [11] Jenkins T., Coutts L.V., Dunlop D.G., Oreffo R.O., Cooper C., Harvey N.C., Thurner P.J., Variability in reference point microindentation and recommendations for testing cortical bone: Maximum load, sample orientation, mode of use, sample preparation and measurement sparing, J. Mech. Behav. Biomed. Mater., 2015, 42:311-24.
  • [12] Johnson K.L., Contact Mechanics, Cambridge Univ. Press, 1985.
  • [13] Johnson W.M., Rapoff A.J., Microindentation in bone: Hardness variation with five independent variables, J. Mater. Sci. - Mater. M., 2007, 18:591–597.
  • [14] Katsamenis O.L., Jenkins T., Thurner P.J., Toughness and damage susceptibility in human cortical bone is proportional to mechanical in homogeneity at the osteonal-level, Bone, 2015, 76:158–168.
  • [15] Kokot G., Wyznaczanie własności mechanicznych tkanek kostnych z zastosowaniem cyfrowej korelacji obrazu, nanoindentacji oraz symulacji numerycznych, Wydaw. Politech. Śl., 2013.
  • [16] Litniewski J., Determination of the elasticity coefficient for a single trabecula of a cancellous bone: Scanning Acoustic Microscopy approach, Ultrasound Med. Biol., 2005, 31(10):1361-1366.
  • [17] Oliveira G.L., Costa C.A., Teixeira S.C.S., Costa M.F., The use of nano- and microinstrumented indentation tests to evaluate viscoelastic behavior of poly(vinylidene fluoride) (PVDF), Polym. Test., 2014, 34, 10–16.
  • [18] Oliver W.C., Pharr G.M., Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology, J. Mater. Res., 2004, 19(1):3-20.
  • [19] PN-EN ISO 14577-1: Metale – Instrumentalna próba wciskania wgłębnika do określania twardości i innych własności materiałów – Część 1: Metoda badania, PKN, 2015.
  • [20] Pokorska I., Skalski K., Makuch A., Pawlikowski M., Measurement of mechanical properties of bone tissue on microstructural level by using DSI (Depth Sensing Indentation) method, Inż. Powierz., 2015, 1:68-80.
  • [21] Rho J.Y., Roy M.E., Tsui T.Y., Pharr G.M., Elastic properties of microstructural components of human bone tissue as measured by nanoindentation, J. Biomed. Mater. Res., 1999, 45(1):48-54.
  • [22] Rodriguez-Florez N., Oyen M.L., Shefelbine S.J., Insight into differences in nanoindentation properties of bone, J. Mech. Behav. Biomed. Mater.,, 2013, 18:90-99.
  • [23] Sakai M., Time-dependent viscoelastic relation between load and penetration for an axisymmetric indenter, Philos. Mag. A, 2002, 82(10):1841-1849.
  • [24] Sneddon I.N., The relation between load and penetration in the axisymmetric boussinesq problem for a punch of arbitrary profile, Int. J. Eng. Sci., 1965, 3(1):47-57.
  • [25] Soons J., Lava P., Debruyne D., Dirckx J., Full-field optical deformation measurement in biomechanics: Digital speckle pattern interferometry and 3D digital image correlation applied to bird beaks, J. Mech. Behav. Biomed. Mater.,, 2012, 14:186-191.
  • [26] Sztefek P., Vanleene M., Olsson R., Collinson R., Pitsillides A.A., Shefelbine S., Using digital image correlation to determine bone surface strains during loading and after adaptation of the mouse tibia, J. Biomech., 2010, 43:599–605.
  • [27] Tang X.G., Hou M., Truss R., Zou J., Yang W., Dong Z.G., Huang H., An unexpected plasticization phenomenon and a constant of the change rate of viscoelastic properties for polymers during nanoindentation test, J. Appl. Polym. Sci., 2011, 122, 885–890.
  • [28] Tomanik M. Nikodem A., Filipiak J., Microhardness of human cancellous bone tissue in progressive hip osteoarthritis, J. Mech. Behav. Biomed. Mater.,, 2016, 64:86-93.
  • [29] Voyiadjis G.Z., Almasri A.H., Park T., Experimental nanoindentation of BCC metals, Mech. Res. Commun., 2010, 37(3), 307–314.
  • [30] Wu Z., Baker T.A., Ovaert T.C., Niebur G.L., The effect of holding time on nanoindentation measurements of creep in bone, J. Biomech., 2011, 44, 1066–1072.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
The study was supported by the Ministry of Science and Higher Education - the research project National Science Centre (NCN) no.2014/15/B/ST7/03244.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-42e14b55-66cd-4b57-af26-39c496111893
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.