Narzędzia help

Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
next last
cannonical link button

http://yadda.icm.edu.pl:80/baztech/element/bwmeta1.element.baztech-4271b877-343c-4acd-a6a0-2ff7ce70dab1

Czasopismo

Archives of Electrical Engineering

Tytuł artykułu

The modified procedures in coercivity scaling

Autorzy Najgebauer, M.  Sokalski, K.  Szczygłowski, J. 
Treść / Zawartość
Warianty tytułu
Języki publikacji EN
Abstrakty
EN The paper presents a scaling approach to the analysis of coercivity. The Widom-based procedure of coercivity scaling has been tested for non-oriented electrical steel. Due to insufficient results, the scaling procedure was improved relating to the method proposed by Van den Bossche. The modified procedure of coercivity scaling gave better results, in comparison to the original approach. The influence of particular parameters and a range of measurement data used in the estimations on the final effect of the coercivity scaling were discussed.
Słowa kluczowe
EN coercivity   hyperbolic tangent transformation   scaling procedure  
Wydawca Polish Academy of Sciences, Electrical Engineering Committee
Czasopismo Archives of Electrical Engineering
Rocznik 2015
Tom Vol. 64, nr 3
Strony 351--359
Opis fizyczny Bibliogr. 18 poz., rys., tab.
Twórcy
autor Najgebauer, M.
  • Częstochowa University of Technology Institute of Electric Power Engineering ul. Armii Krajowej 17, 42-200 Częstochowa, Poland, najgebauer@el.pcz.czest.pl
autor Sokalski, K.
  • Częstochowa University of Technology Institute of Computer Science ul. Armii Krajowej 17, 42-200 Częstochowa, Poland, sokalski@el.pcz.czest.pl
autor Szczygłowski, J.
  • Częstochowa University of Technology Institute of Electric Power Engineering ul. Armii Krajowej 17, 42-200 Częstochowa, Poland, jszczyg@gamil.com
Bibliografia
[1] Vértesy G., Magni A., Frequency dependence of coercive properties. Journal of Magnetism and Magnetic Materials 256: 7-12 (2003).
[2] Zhukov A., Vázquez M., Velázquez J. et al., Frequency dependence of coercivity in rapidly quenched amorphous materials. Materials Science and Engineering A, 226-228: 753-756 (1997).
[3] Grössinger R., Mehboob N., Suess D. et al., An eddy-current model describing the frequency dependence of the coercivity of polycrystalline Galfenol. IEEE Transactions on Magnetics 48: 3076-3079 (2012).
[4] Groessinger R., Mehboob N., Kriegisch M. et al., Frequency dependence of the coercivity of soft magnetic materials. IEEE Transactions on Magnetics 48: 1473-1476 (2012).
[5] Najgebauer M., The concept of scaling analysis in description of soft magnets’ properties. Proceedings of The 9th International Conference Mechatronic Systems and Materials, MSM’2013, Vilnius, Technica, pp. 180-181 (2013).
[6] Najgebauer M., The concept of scaling analysis in describing the properties of soft magnets. Solid State Phenomena 220-221: 646-651 (2015).
[7] Steinke N.-J., Moore T.A., Mansell R. et al., Nonuniversal dynamic magnetization reversal in the Barkhausen-dominated and mesofrequency regimes. Physical Review B, 86: 184-434 (2012).
[8] Handoko D., Lee S.-H., Lee K.M. et al., Comparison of hysteresis loop area scaling behavior of Co/Pt multilayers: Discrete and continuous field sweeping. Journal of Magnetism and Magnetic Materials 351: 82-86 (2014).
[9] Sokalski K., Szczygłowski J., Najgebauer M., Wilczyński W., Losses scaling in soft magnetic materials. COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering 26: 640-649 (2007).
[10] Sokalski K., Szczygłowski J., Formula for energy loss in soft magnetic materials and scaling. Acta Physica Polonica A, 15: 920-924 (2007).
[11] Najgebauer M., Scaling theory and its chosen applications in electromagnetism. Przegląd Elektrotechiczny 12: 213-216 (2008).
[12] Stanley H.E., Scaling, universality and renormalization: three pillars of modern critical phenomena. Reviews of Modern Physics 71: S358-S366 (1999).
[13] Horvat J., Babić E., Zadro K., Marohnić Ž., Frequency and peak magnetization dependence of the coercive field in Fe-Ni-B-Si amorphous alloys. Journal of Magnetism and Magnetic Materials 110: 215-220 (1992).
[14] IEC Standard, Publication 404-2, Third Edition 1996, Magnetic materials, part 2: Methods of measurement of the magnetic properties of electrical steel sheet and strip by means of an Epstein frame. International Electrotechnical Commission (1996).
[15] IEC Standard, Publication 404-2, Third Edition 1997, Magnetic materials, part 3: Methods of measurement of specific total losses of magnetic sheet and strip by means of a single sheet tester, International Electrotechnical Commission (1997).
[16] Van den Bossche A., Valchev V., Georgiev G., Measurement and loss model of ferrites in non-sinusoidal waves. IEEE Power Electronics Specialists Conference, PESC04, IEEE, pp. 4814-4818 (2004).
[17] Van den Bossche A., Valchev V., van de Sype D., Van den Bossche L., Ferrite losses of cores with square wave voltage and DC bias. Journal of Applied Physics 99: 08M908-08M908-3 (2006).
[18] Ruszczyk A., Sokalski K., Szczygłowski J., Scaling in modeling of core losses in soft magnetic materials exposed to nonsinusoidal flux waveforms and DC bias conditions. http://arxiv.org/pdf/1309.0022.pdf (accessed 20 August 2013).
Kolekcja BazTech
Identyfikator YADDA bwmeta1.element.baztech-4271b877-343c-4acd-a6a0-2ff7ce70dab1
Identyfikatory
DOI 10.2478/aee-2015-0027