Identyfikatory
Warianty tytułu
Sonochemical synthesis of bioactive nanoparticles towards direct embedding into polymeric biomaterials surfaces
Języki publikacji
Abstrakty
Nanomaterials are the latest group of materials which owes its special features thanks to their nanosize. The most characteristic properties include the large surface area, strong chemical reactivity and tendency to agglomerate. Nanomaterials have wide applications in several disciplines, i.e. materials engineering, medicine and food technology. These materials have high potential in biomedical engineering thanks to increased biological activity when compared with the bulk material. Recent advances in nanotechnology are currently mostly focused on improvement of effective synthesis methods. Sonochemical irradiation is an effective technique for the synthesis nanoparticles. This method is widely used for inorganic nanoparticles production in contrast to organic ones, which could open powerful possibilities of creating bioactive, therapeutic or self-cleaning surfaces. In principle, the introduction of a strong acoustic field into an aqueous solution induces acoustic cavitation. The nucleation, growth and collapse of the bubble during acoustic cavitation are graphically shown in Figure 1. When the bubble reaches a certain size it become resonant with ultrasonic radiation and rapidly increase in size. Then, the bubble becomes unstable and violently collapses. The collapse of microbubbles produces extremely high localized pressures and temperatures (hundreds bar and thousands K) which lead to hot spot. Conditions of sonochemistry are rather radical in comparison to other chemical processes. Moreover, the synthesis and simultaneously embedding nanoparticles into polymer surfaces are possible. This paper constitutes a review of the recent literature in sonochemical synthesis of organic, bioactive nanoparticles. The introduction will focus on a short overview of sonochemistry, the next part will present the mechanism of formation nanoparticles using ultrasounds. Also, some advantages of sonochemistry as a tool for nanomaterials fabrication is presented. In the next section some examples of bioactive nanoparticles prepared in sonochemical reaction are listed and advantages of sonochemical synthesis are discussed.
Wydawca
Czasopismo
Rocznik
Tom
Strony
313--325
Opis fizyczny
Bibliogr. 22 poz., rys., schem., tab.
Twórcy
autor
- Wydział Fizyki, Astronomii i Informatyki Stosowanie, Wydział Chemii, Uniwersytet Jagielloński ul. Gronostajowa 2, 30387 Kraków
Bibliografia
- [1] D.L. Miller, N.B. Smith, M.R. Bailey, G.J. Czarnota, K. Hynynen, I.R.S. Makin, J. Ultras. Med., 2012, 31(4), 623.
- [2] R.W. Wood, A.L. Loomis, Philos. Mag., 1927, 4 (22), 417.
- [3] A. Weissler, J. Acoust. Soc. Am., 1953, 25 (4), 651.
- [4] F. Grieser, P.K. Choi, N. Enomoto, H. Harada, K. Okitsu, K. Yasui, Sonochemistry and the acoustic bubble, Elsevier, (2015).
- [5] T. Szymczyk, S. Rabiej, A. Pielesz, J. Desselberger, Tablice matematyczne, fizyczne, chemiczne, astronomiczne, PARK, Bielsko-Biała 2003.
- [6] F.A. Everest, K.C. Pohlmann, McGraw-Hill Professional, 2015.
- [7] K.S. Suslick, S.B. Choe, A.A. Cichowlas, M.W. Grinstaff, Nature, 1991, 353, 414.
- [8] J.H. Bang, K.S. Suslick, Adv. Mater., 2010, 22 (10), 1039.
- [9] R.W. Kelsal, I.W. Hamley, M. Geoghegan, Nanotechnologie, PWN, Warszawa 2008.
- [10] J.P.M. Almeida, A.L. Chen, A. Foster, R. Drezek, Nanomedicine (Lond.), 2011, 6 (5), 815.
- [11] I.A. Rahman, V. Padavettan, J. Nanomater., 2012, 2012, 1.
- [12] K.S. Suslick, T.W. Hyeon, M.W. Fang, Chem. Mater., 1996, 8, 2172.
- [13] I. Yariv, A. Lipovsky, A. Gedanken, R.Lubart, D. Fixler, Int. J. Nanomed., 2015, 10, 3593.
- [14] A. Gedanken, Ultrasonics sonochemistry, 2007, 14(4), 418.
- [15] J.J. Hinman, K.S. Suslick, Top. Curr. Chem., 2017, 375(1), 59.
- [16] A. Gedanken, Ultrason. Sonochem., 2004, 11(2), 47.
- [17] Centralna Baza Endoprotezoplastyk NFZ, Realizacja świadczeń endoprotezoplastyki stawowej w 2015 r., www.nfz.gov.pl/o-nfz/publikacje (dostęp 08.05 2017).
- [18] M. Golda-Cepa, A. Chorylek, P. Chytrosz, M. Brzychczy-Wloch, J. Jaworska, J. Kasperczyk, A. Kotarba, 2016, ACS Appl. Mater. Inter., 8(34), 22093.
- [19] Karta charakterystyki substancji chemicznej–dichlorometan [online], Avantor Performance Materials Poland Spółka Akcyjna, [dostęp: 14-05-2017]. Dostępny w Internecie: http://www.poch.com.pl/1/wysw/msds_clp.php?A=5497ec255505787c0001
- [20] D. Meridor, A. Gedanken, Ultrason. Sonochem., 2013, 20(1), 425.
- [21] O. Grinberg, M. Natan, A. Lipovsky, A. Varvak, H. Keppner, A. Gedanken, E. Banin, J. Mater. Chem. B, 2015, 3(1), 59.
- [22] M. Gołda-Cepa, P. Chytrosz, A. Chorylek, A. Kotarba, Nanomed. Journal, 2018, 14(3), 941. Praca wpłynęła do Redakcji 26 maja 2018
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-415a5671-067e-484f-aa2c-1fd665098270