Narzędzia help

Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
first last
cannonical link button

http://yadda.icm.edu.pl:80/baztech/element/bwmeta1.element.baztech-3f95c7f7-288a-401c-9c93-acb6774be878

Czasopismo

Bulletin of the Polish Academy of Sciences. Technical Sciences

Tytuł artykułu

Demonstration of HOT photoresponse of MWIR T2SLs InAs/InAsSb photoresistors

Autorzy Michalczewski, Krystian  Tsai, T. Y.  Martyniuk, P.  Wu, C. H. 
Treść / Zawartość
Warianty tytułu
Języki publikacji EN
Abstrakty
EN We report on the photoresponse of mid-wavelength infrared radiation (MWIR) type-II superlattices (T2SLs) InAs/InAsSb high operating temperature (HOT) photoresistor grown on GaAs substrate. The device consists of a 200 periods of active layer grown on GaSb buffer layer. The photoresistor reached a 50% cut-off wavelength of 5 μm and 6 μm at 200 K and 300 K respectively. The time constant of 30 ns is observed at 200 K under 1 V bias. This is the first observation of the photoresponse in MWIR T2SLs InAs/InAsSb above 200 K..
Słowa kluczowe
PL HOT   MWIR   T2SLs   InAs/InAsSb   fotorezystory  
EN HOT   MWIR   T2SLs   InAs/InAsSb   photoresistors  
Wydawca Polska Akademia Nauk, Wydział IV Nauk Technicznych
Czasopismo Bulletin of the Polish Academy of Sciences. Technical Sciences
Rocznik 2019
Tom Vol. 67, nr 1
Strony 141--145
Opis fizyczny Bibliogr. 11 poz., rys., wykr., tab.
Twórcy
autor Michalczewski, Krystian
autor Tsai, T. Y.
  • Graduate Institute of Photonics and Optoeletronics, National Taiwan University, Roosevelt Str., 10617 Taipei, Taiwan
autor Martyniuk, P.
  • Institute of Applied Physics, Military University of Technology, 2 Urbanowicza Str., 00-908 Warsaw, Poland
autor Wu, C. H.
  • Graduate Institute of Photonics and Optoeletronics, National Taiwan University, Roosevelt Str., 10617 Taipei, Taiwan
Bibliografia
[1] M.A. Kinch, Fundamentals of infrared detector materials, SPIE Press 2007.
[2] G. Osbourn, L. Dawson, R. Biefeld, T. Zipperian, I. Fritz, and B. Doyle, “III–V strained layer supperlattices for long-wavelength detector applications: Recent progress”, Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 5, 3150‒3152 (1987).
[3] J. Schulman and T. McGill, “The CdTe/HgTe superlattice: Proposal for a new infrared material”, Appl. Phys.Lett. 34, 663‒665 (1979).
[4] Y. Huang, J. Ryou, R. Dupuis, V. D’costa, E. Steenbergen, and J. Fan, et al. “Epitaxial growth and characterization of InAs/ GaSb and InAs/InAsSb type-II superlattices on GaSb substrates by metalorganic chemical vapor deposition for long wavelength infrared photodetectors”, J. Cryst. Growth. 314, 92‒96 (2011).
[5] A. Rogalski, M. Kopytko, and P. Martyniuk, “InAs/GaSb type-II superlattice infrared detectors: future prospect”, App. Phys. Rev. 4.3, 031304 (2017).
[6] J. Bajaj, G. Sullivan, D. Lee, E. Aifer, and M. Razeghi, “Comparison of type-II superlattice and HgCdTe infrared detector technologies”, Proc. SPIE 65420, 65420B (2007).
[7] K. Michalczewski, F. Ivaldi, Ł. Kubiszyn, D. Benyahia, J. Boguski, and A. Kębłowski, et al. “Studies of dark current reduction in InAsSb mid-wave infrared HOT detectors through Two step passivation technique”, Acta Physica Polonica A. 132, 325‒328 (2017).
[8] D. Benyahia, K. Michalczewski, A. Kębłowski, P. Martyniuk, J. Piotrowski, and A. Rogalski, „Interfacial misfit array technique for GaSb growth on GaAs (001) substrate by molecular beam epitaxy”, J Electron Mater. 47, 299‒304 (2017).
[9] S.J. Polly, C.G. Bailey, A.J. Grede, D.V. Forbes, and S.M. Hubbard, “Calculation of strain compensation thickness for III–V semiconductor quantum dot superlattices”, J.Cryst.Growth. 454, 64‒70 (2017).
[10] B. Olson, E.A. Shaner, J.K. Kim, J.F. Klem, S.D. Hawkins, and M. Flatté, et al. “Identification of dominant recombination mechanisms in narrow-bandgap InAs/InAsSb type-II superlattices and InAsSb alloys”, Appl. Phys. Lett. 103, 052106 (2013).
[11] Q. Durlin, J. Perez, R. Rossignol, J. Rodriguez, L. Cerutti, and B. Delacourt, et al., “InAs/InAsSb superlattice structure tailored for detection of the full midwave infrared spectral domain”, Quantum sensing and nano electronics and photonics XIV, International Society for Optics and Photonics, 10111, 1011112 (2017).
Uwagi
PL Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
EN This work was supported by. the Polish National Research and Development Center with the grant number PL-TW4/3/2017.
Kolekcja BazTech
Identyfikator YADDA bwmeta1.element.baztech-3f95c7f7-288a-401c-9c93-acb6774be878
Identyfikatory
DOI 10.24425/bpas.2019.127343