Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Spectral Assessment of Isostatic gravity models against CHAMP, GRACE, GOCE satellite-only and combined gravity models

Warianty tytułu
Języki publikacji
The availability of digital elevation databases representing the topographic and bathymetric relief with global homogeneous coverage and increasing resolution permits the computation of crust-related Earth gravity models, the so-called topographic/isostatic Earth gravity models (henceforth T/I models). Although expressing the spherical harmonic content of the topographic masses, the interpretation purpose of T/I models has not been given the attention it deserves, apart from the fact that they express some degree of compensation to the observed spectrum of the topographic heights, depending on the kind of the applied compensation mechanism. The present contribution attempts to improve the interpretation aspects of T/I Earth gravity models. To this end, a rigorous spectral assessment is performed to a standard Airy/Heiskanen T/I model against different CHAllenging Minisatellite Payload (CHAMP), Gravity Recovery and Climate Experiment (GRACE), Gravity field and steadystate Ocean Circulation Explorer (GOCE) satellite-only, and combined gravity models. Different correlation bandwidths emerge for these four groups of satellite-based gravity models. The band-limited forward computation of the models using these bandwidths reproduces nicely the main features of the applied T/I model.
Opis fizyczny
Bibliogr. 38 poz.
  • Department of Geodesy and Surveying, Aristotle University of Thessaloniki, Thessaloniki, Greece,
  • Department of Geodesy and Surveying, Aristotle University of Thessaloniki, Thessaloniki, Greece
  • 1.Bagherbandi, M., and L.E. Sjöberg (2011), Comparison of crustal thickness from two gravimetric-isostatic models and CRUST2.0, Stud. Geophys. Geod. 55, 4, 641-666, DOI: 10.1007/s11200-010-9030-0.
  • 2.Bagherbandi, M., and L.E. Sjöberg (2012a), A synthetic Earth gravity model based on a topographic-isostatic model, Stud. Geophys. Geod. 56, 4, 935-955, DOI: 10.1007/s11200-011-9045-1.
  • 3.Bagherbandi, M., and L.E. Sjöberg (2012b), Modelling the density contrast and depth of the Moho discontinuity by seismic and gravimetric-isostatic methods with an application to Africa, J. Afr. Earth Sci. 68, 111-120, DOI: 10.1016/j.jafrearsci.2012.04.003.
  • 4.Bagherbandi, M., and L.E. Sjöberg (2013), Improving gravimetric-isostatic models of crustal depth by correcting for non-isostatic effects and using CRUST2.0, Earth-Sci. Rev. 117, 29-39, DOI: 10.1016/j.earscirev.2012. 12.002.
  • 5.Bruinsma, S.L., J.-C. Marty, G. Balmino, R. Biancale, Ch. Förste, O. Abrikosov, and H. Neumayer (2010), GOCE gravity field recovery by means of the direct numerical method. In: H. Lacoste-Francis (ed.), Proc. ESA Living Planet Symposium, 27 June – 2 July 2010, Bergen, Norway, Vol. 27, European Space Agency, Publication SP-686.
  • 6.Bruinsma, S., J.-C. Marty, G. Balmino, Ch. Förste, O. Abrikosov, and H. Neumayer (2011), A GOCE-only gravity field model inferred from 6.7 months of data using the direct numerical method, Geophys. Res. Abstr. 13, EGU2011-5850.
  • 7.Claessens, S.J. (2002), A synthetic Earth model analysis, implementation, validation and application, M.Sc. Thesis, Delft University of Technology, Faculty of Civil Engineering and Geosciences, Department of Geodesy, Delft, The Netherlands, 75 pp.
  • 8.Eshagh, M., and M. Bagherbandi (2011), Smoothing impact of isostatic crustal thickness models on local integral inversion of satellite gravity gradiometry data, Acta Geophys. 59, 5, 891-906, DOI: 10.2478/s11600-011-0017-1.
  • 9.Flechtner, F., Ch. Dahle, K.H. Neumayer, R. König, and Ch. Förste (2010), The Release 04 CHAMP and GRACE EIGEN gravity field models. In: F.M. Flechtner, Th. Gruber, A. Güntner, M. Mandea, M. Rothacher, T. Schöne, and J. Wickert (eds.), System Earth via Geodetic-Geophysical Space Techniques, Advanced Technologies in Earth Sciences, Springer, Berlin Heidelberg, 41-58, DOI: 10.1007/978-3-642-10228-8_4.
  • 10.Förste, Ch., F. Flechtner, R. Schmidt, R. Stubenvoll, M. Rothacher, J. Kusche, H. Neumayer, R. Biancale, J.-M. Lemoine, F. Barthelmes, S. Bruinsma, R. König, and Ul. Meyer (2008), EIGEN-GL05C – A new global combined high-resolution GRACE-based gravity field model of the GFZ-GRGS cooperation, Geophys. Res. Abstr. 10, EGU2008-A-03426.
  • 11.Förste, Ch., R. Shako, F. Flechtner, C. Dahle, O. Abrikosov, K.-H. Neumayer, F. Barthelmes, R. König, S.-L. Bruinsma, J.-C. Marty, J.-M. Lemoine, G. Balmino, and R. Biancale (2012), A new release for EIGEN-6 – The latest combined global gravity field model including LAGEOS, GRACE and GOCE data from the collaboration of GFZ Potsdam and GRGS Toulouse, Geophys. Res. Abstr. 14, EGU2012-2821.
  • 12.Göttl, F., and R. Rummel (2009), A geodetic view on isostatic models, Pure Appl. geophys. 166, 8-9, 1247-1260, DOI: 10.1007/s00024-004-0489-x.
  • 13.Jäggi, A., G. Beutler, and L. Mervart (2010), GRACE gravity field determination using the Celestial Mechanics Approach – first results. In: S.P. Mertikas (ed.), Gravity, Geoid and Earth Observation, International Association of Geodesy Symposia, Vol. 135, Springer, Berlin Heidelberg, 177-184, DOI: 10.1007/978-3-642-10634-7_24.
  • Lemoine, F.G., S.C. Kenyon, J.K. Factor, R.G. Trimmer, N.K. Pavlis, D.S. Chinn,
  • 14.C.M. Cox, S.M. Klosko, S.B. Luthcke, M.H. Torrence, Y.M. Wang, R.G. Williamson, E.C. Pavlis, T.R. Olson, and R.H. Rapp (1998), The development of the joint NASA GSFC and the National Imagery and Mapping Agency (NIMA) geopotential model EGM96, NASA/TP-1998–206861, National Aeronautics and Space Administration, Goddard Space Flight Center, Greenbelt, USA.
  • 15.Martinec, Z. (1993), A model of compensation of topographic masses, Surv. Geophys. 14, 4-5, 525-535, DOI: 10.1007/BF00690575.
  • 16.Mayer-Gürr, T. (2007), ITG-Grace03s: The latest GRACE gravity field solution computed in Bonn. In: Joint International GSTM and DFG SPP Symposium, 15-17 October 2007, Potsdam.
  • 17.Migliaccio, F., M. Reguzzoni, A. Gatti, F. Sansò, and M. Herceg (2011), A GOCEonly global gravity field model by the space-wise approach, Geophys. Res. Abstr. 13, EGU2011-10063-3.
  • 18.Novák, P., R. Tenzer, M. Eshagh, and M. Bagherbandi (2013), Evaluation of gravitational gradients generated by Earth’s crustal structures, Comput. Geosci. 51, 22-33, DOI: 10.1016/j.cageo.2012.08.006.
  • 19.Pail, R., H. Goiginger, R. Mayrhofer, W.-D. Schuh, J.M. Brockmann, I. Krasbutter, E. Höck, and T. Fecher (2010), GOCE gravity field model derived from orbit and gradiometry data applying the time-wise method. In: H. Lacoste-Francis (ed.), Proc. ESA Living Planet Symposium, 27 June – 2 July 2010, Bergen, Norway, Vol. 27, European Space Agency, Publication SP-686.
  • 20.Pail, R., S. Bruinsma, F. Migliaccio, Ch. Förste, H. Goiginger, W.-D. Schuh, E. Höck, M. Reguzzoni, J.M. Brockmann, O. Abrikosov, M. Veicherts, T. Fecher, R. Mayrhofer, I. Krasbutter, F. Sansò, and C.C. Tscherning (2011), First GOCE gravity field models derived by three different approaches, J. Geod. 85, 11, 819-843, DOI: 10.1007/s00190-011-0467-x.
  • 21.Pavlis, N.K., and R.H. Rapp (1990), The development of an isostatic gravitational model to degree 360 and its use in global gravity modelling, Geophys. J. Int. 100, 3, 369-378, DOI: 10.1111/j.1365-246X.1990.tb00691.x.
  • 22.Pavlis, N.K., S.A. Holmes, S.C. Kenyon, D. Schmidt, and R. Trimmer (2005), A preliminary gravitational model to degree 2160. In: C. Jekeli, L. Bastos, and J. Fernandes (eds.), Gravity, Geoid and Space Missions, International Association of Geodesy Symposia, Vol. 129, Springer, Berlin Heidelberg, 18-23, DOI: 10.1007/3-540-26932-0_4.
  • 23.Prange, L., A. Jäggi, G. Beutler, R. Dach, and L. Mervart (2008), Gravity field determination at the AIUB – the Celectial Mechanics Approach. In: M.G. Sideris (ed.), Observing our Changing Earth, International Association of Geodesy Symposia, Vol. 133, Springer, Berlin Heidelberg, 353-362, DOI: 10.1007/978-3-540-85426-5_42.
  • 24.Rapp, R.H. (1986), Global geopotential solutions. In: H. Sünkel (ed.), Mathematical and Numerical Techniques in Physical Geodesy, Lecture Notes in Earth Sciences, Vol. 7, Springer, Berlin Heidelberg, 365-415, DOI: 10.1007/BFb0010136.
  • 25.Reigber Ch., H. Lühr, and P. Schwintzer (2002), CHAMP mission status, Adv. Space Res. 30, 2, 129-134, DOI: 10.1016/S0273-1177(02)00276-4.
  • 26.Reigber, Ch., H. Jochmann, J. Wünsch, S. Petrovic, P. Schwintzer, F. Barthelmes, K.-H. Neumayer, R. König, Ch. Förste, G. Balmino, R. Biancale, J.-M. Lemoine, S. Loyer, and F. Perosanz (2005), Earth gravity field and seasonal variability from CHAMP. In: Ch. Reigber, H. Lühr, P. Schwintzer, and J. Wickert (eds.), Earth Observation with CHAMP – Results from
  • Three Years in Orbit, Springer, Berlin Heidelberg, 25-30, DOI: 10.1007/3-540-26800-6_4.
  • 27.Ries, J.C., S. Bettadpur, S. Poole, and T. Richter (2011), Mean background gravity fields for GRACE processing, presented at the GRACE Science Team Meeting, Austin, TX, 8-10 August 2011,
  • 28.Rummel, R., and M. Vangelderen (1995), Meissl scheme – spectral characteristics
  • of physical geodesy, Manuscr. Geod. 20, 5, 379-385.
  • 29.Rummel, R., W. Yi, and C. Stummer (2011), GOCE gravitational gradiometry, J. Geod. 85, 11, 777-790, DOI: 10.1007/s00190-011-0500-0.
  • 30.Sneeuw, N.J. (2000), A semi-analytical approach to gravity field analysis from satellite observations, Ph.D. Thesis, Deutsche Geodätische Kommission, Reihe C, Heft 527, Verlag der Bayerischen Akademie der Wissenschaften, München, 117 pp.
  • 31.Sünkel, H. (1985), An isostatic Earth model, Tech. Rep. No. 367, Department of Geodetic Science and Surveying, The Ohio State University, Columbus, USA, 53 pp.
  • 32.Sünkel, H. (1986), Global topographic-isostatic models. In: H. Sünkel (ed.), Mathematical and Numerical Techniques in Physical Geodesy, Lecture Notes in Earth Sciences, Vol. 7, Springer, Berlin Heidelberg, 417-462, DOI: 10.1007/BFb0010137.
  • 33.Tapley, B.D., S. Bettadpur, M. Watkins, and Ch. Reigber (2004), The gravity recovery and climate experiment: Mission overview and early results, Geophys. Res. Lett. 31, 9, L09607, DOI: 10.1029/2004GL019920.
  • 34.Tapley, B.D., J. Ries, S. Bettadpur, D. Chambers, M. Cheng, F. Condi, and S. Poole (2007), The GGM03 mean earth gravity model from GRACE, Eos Trans. AGU 88, 52, Fall Meeting Suppl., Abstr. G42A-03.
  • 35.Tenzer, R., M. Bagherbandi, and P. Vajda (2013), Global model of the upper mantle lateral density structure based on combining seismic and isostatic models, Geosci. J. 17, 1, 65-73, DOI: 10.1007/s12303-013-0009-z.
  • 36.Tscherning, C.C. (1985), On the long-wavelength correlation between gravity and topography. In: H. Kautzleben (ed.), Proc. 5th Inter. Symposium “Geodesy and Physics of the Earth”, 23-29 September 1984, Magdeburg, G.D.R., Veröffentlichungen des Zentralinstituts für Physik der Erde, Vol. 81, 2, Akademie der Wissenschaften der DDR, Potsdam, 134-142.
  • 37.Tsoulis, D. (1999), Spherical harmonic computations with topographic/isostatic coefficients, Reports in the series IAPG/FESG, Rep. No. 3, Institute of Astronomical and Physical Geodesy, Technical University of Munich, 33 pp.
  • 38.Tsoulis, D., and K. Patlakis (2007), Spectral assessment of recently released CHAMP and GRACE satellite-only Earth gravity models. In: A. Kılıçoğlu, and R. Forsberg (eds.), Proc. 1st Inter. Symp. of the Int. Gravity Field Service “Gravity Field of the Earth”, Harita Dergisi, Sp. Issue 18, General Command of Mapping, Ankara, Turkey, 175-180.
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.