Narzędzia help

Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
first last
cannonical link button

http://yadda.icm.edu.pl:80/baztech/element/bwmeta1.element.baztech-3dac338e-5296-4ce6-aabc-0e492e36cbfe

Czasopismo

Journal of Power of Technologies

Tytuł artykułu

On the combustion of premixed gasoline - natural gas dual fuel blends in an optical SI engine

Autorzy Petrakides, S.  Butcher, D.  Pezouvanis, A.  Chen, R. 
Treść / Zawartość http://www.papers.itc.pw.edu.pl
Warianty tytułu
Języki publikacji EN
Abstrakty
EN Natural Gas (NG) is a promising alternative fuel. Historically, the slow burning velocity of NG poses significant challenges for its utilisation in energy efficient Spark Ignited (SI) engines. It has been experimentally observed that a binary blend of NG and gasoline has the potential to accelerate the combustion process in an SI engine, resulting in a faster combustion even in comparison to that of the base fuels. The mechanism of such effects remains unclear. In this work, an optical diagnosis has been integrated with in-cylinder pressure analysis to investigate the mechanism of flame velocity and stability with the addition of NG to gasoline in a binary Dual Fuel (DF) blend. Experiments were performed under a sweep of engine load, quantified by the engine intake Manifold Air Pressure (MAP) (0.44, 0.51. 0.61 bar) and equivalence air to fuel ratio (Φ = 0.8, 0.83, 1, 1.25). NG was added to a gasoline fuelled engine in three different energy ratios 25%, 50% and 75%. The results showed that within the flamelet combustion regime, the effect of Markstein length dominates the lean burn combustion process both from a stability and velocity prospective. The effect of the laminar burning velocity on the combustion process gradually increases as the air fuel ratio shifts from stoichiometric to fuel rich values.
Słowa kluczowe
PL paliwo   gaz ziemny   silnik spalinowy   rozciąganie płomienia   długość Marksteina  
EN dual fuel   natural gas   engine combustion   flame stretch   Markstein length  
Wydawca Institute of Heat Engineering, Warsaw University of Technology
Czasopismo Journal of Power of Technologies
Rocznik 2018
Tom Vol. 98, nr 5
Strony 387--395
Opis fizyczny Bibliogr. 44 poz., rys., tab., wykr.
Twórcy
autor Petrakides, S.
autor Butcher, D.
  • Department of Aeronautical and Automotive Engineering, Loughborough University, United Kingdom
autor Pezouvanis, A.
  • Department of Aeronautical and Automotive Engineering, Loughborough University, United Kingdom
autor Chen, R.
  • Department of Aeronautical and Automotive Engineering, Loughborough University, United Kingdom
Bibliografia
[1] M. Gou, B. Detuncq, C. Guernier, P. St-Germain, Performance of a single cylinder engine fuelled by a mixture of natural gas and gasoline, Tech. rep., SAE Technical Paper (1990).
[2] S. Di Iorio, P. Sementa, B. M. Vaglieco, Experimental investigation of a methane-gasoline dual-fuel combustion in a small displacement optical engine, Tech. rep., SAE Technical Paper (2013).
[3] S. Di Iorio, P. Sementa, B. M. Vaglieco, F. Catapano, An experimental investigation on combustion and engine performance and emissions of a methane-gasoline dual-fuel optical engine, Tech. rep., SAE Technical Paper (2014).
[4] F. Catapano, S. Di Iorio, P. Sementa, B. M. Vaglieco, Experimental analysis of a gasoline pfi-methane di dual fuel and an air assisted combustion of a transparent small displacement si engine, Tech. rep., SAE Technical Paper (2015).
[5] S. Petrakides, R. Chen, D. Gao, H. Wei, Experimental study on stoichiometric laminar flame velocities and markstein lengths of methane and prf95 dual fuels, Fuel 182 (2016) 721–731.
[6] G. Tian, R. Daniel, H. Li, H. Xu, S. Shuai, P. Richards, Laminar burning velocities of 2, 5-dimethylfuran compared with ethanol and gasoline, Energy & Fuels 24 (7) (2010) 3898–3905.
[7] S. Jerzembeck, N. Peters, P. Pepiot-Desjardins, H. Pitsch, Laminar burning velocities at high pressure for primary reference fuels and gasoline: Experimental and numerical investigation, Combustion and Flame 156 (2) (2009) 292–301.
[8] D. Bradley, R. Hicks, M. Lawes, C. Sheppard, R. Woolley, The measurement of laminar burning velocities and markstein numbers for isooctane– air and iso-octane–n-heptane–air mixtures at elevated temperatures and pressures in an explosion bomb, Combustion and flame 115 (1-2) (1998) 126–144.
[9] O. Mannaa, M. S. Mansour, W. L. Roberts, S. H. Chung, Laminar burning velocities at elevated pressures for gasoline and gasoline surrogates associated with ron, Combustion and Flame 162 (6) (2015) 2311–2321.
[10] J. Beeckmann, O. Röhl, N. Peters, Numerical and experimental investigation of laminar burning velocities of iso-octane, ethanol and nbutanol, Tech. rep., SAE Technical Paper (2009).
[11] X. J. Gu, M. Z. Haq, M. Lawes, R. Woolley, Laminar burning velocity and markstein lengths of methane–air mixtures, Combustion and flame 121 (1-2) (2000) 41–58.
[12] G. Rozenchan, D. Zhu, C. Law, S. Tse, Outward propagation, burning velocities, and chemical effects of methane flames up to 60 atm, Proceedings of the Combustion Institute 29 (2) (2002) 1461–1470.
[13] M. Hassan, K. Aung, G. Faeth, Measured and predicted properties of laminar premixed methane/air flames at various pressures, Combustion and Flame 115 (4) (1998) 539–550.
[14] P. Brequigny, F. Halter, C. Mounaïm-Rousselle, T. Dubois, Fuel performances in spark-ignition (si) engines: Impact of flame stretch, Combustion and Flame 166 (2016) 98–112.
[15] P. Aleiferis, J. Serras-Pereira, D. Richardson, Characterisation of flame development with ethanol, butanol, iso-octane, gasoline and methane in a direct-injection spark-ignition engine, Fuel 109 (2013) 256–278.
[16] J. Serras-Pereira, P. Aleiferis, D. Richardson, An analysis of the combustion behavior of ethanol, butanol, iso-octane, gasoline, and methane in a direct-injection spark-ignition research engine, Combustion Science and Technology 185 (3) (2013) 484–513.
[17] P. G. Aleiferis, M. K. Behringer, Flame front analysis of ethanol, butanol, iso-octane and gasoline in a spark-ignition engine using lasertomography and integral length scale measurements, Combustion and Flame 162 (12) (2015) 4533–4552.
[18] J. Sevik, M. Pamminger, T. Wallner, R. Scarcelli, R. Reese, A. Iqbal, B. Boyer, S. Wooldridge, C. Hall, S. Miers, Performance, efficiency and emissions assessment of natural gas direct injection compared to gasoline and natural gas port-fuel injection in an automotive engine, SAE International Journal of Engines 9 (2) (2016) 1130–1142.
[19] A. Catania, D. Misul, E. Spessa, A. Vassallo, Analysis of combustion parameters and their relation to operating variables and exhaust emissions in an upgraded multivalve bi-fuel cng si engine, Tech. rep., SAE Technical Paper (2004).
[20] B. Karlovitz, D. Denniston Jr, D. Knapschaefer, F. Wells, Studies on turbulent flames: A. flame propagation across velocity gradients b. turbulence measurement in flames, in: Symposium (international) on combustion, Vol. 4, Elsevier, 1953, pp. 613–620.
[21] G. Markstein, Non-steady flame propagation (1964).
[22] P. Clavin, Dynamic behavior of premixed flame fronts in laminar and turbulent flows, Progress in energy and combustion science 11 (1) (1985) 1–59.
[23] R. A. Strehlow, L. D. Savage, The concept of flame stretch, Combustion and Flame 31 (1978) 209–211.
[24] M. MATALON, On flame stretch, Combustion Science and Technology 31 (3-4) (1983) 169–181. arXiv:https://doi.org/10.1080/00102208308923638, doi:10.1080/00102208308923638. URL https://doi.org/10.1080/00102208308923638
[25] S. Chung, C. Law, An invariant derivation of flame stretch.
[26] C. Law, C. Sung, Structure, aerodynamics, and geometry of premixed flamelets, Progress in energy and combustion science 26 (4-6) (2000) 459–505.
[27] S. Chaudhuri, A. Saha, C. K. Law, On flame–turbulence interaction in constant-pressure expanding flames, Proceedings of the Combustion Institute 35 (2) (2015) 1331–1339.
[28] A. Lipatnikov, Fundamentals of premixed turbulent combustion, CRC Press, 2012.
[29] S. Petrakides, R. Chen, D. Gao, H. Wei, Experimental investigation on the laminar burning velocities and markstein lengths of methane and prf95 dual fuels, Energy & Fuels 30 (8) (2016) 6777–6789.
[30] M. Baloo, B. M. Dariani, M. Akhlaghi, I. Chitsaz, Effect of isooctane/ methane blend on laminar burning velocity and flame instability, Fuel 144 (2015) 264–273.
[31] M. Baloo, B. M. Dariani, M. Akhlaghi, M. AghaMirsalim, Effects of pressure and temperature on laminar burning velocity and flame instability of iso-octane/methane fuel blend, Fuel 170 (2016) 235–244.
[32] P. Brequigny, F. Halter, C. Mounaïm-Rousselle, B. Moreau, T. Dubois, Thermodiffusive effect on the flame development in lean burn spark ignition engine, Tech. rep., SAE Technical Paper (2014).
[33] P. Brequigny, C. Mounaïm-Rousselle, F. Halter, B. Moreau, T. Dubois, Impact of fuel properties and flame stretch on the turbulent flame speed in spark-ignition engines, Tech. rep., SAE Technical Paper (2013).
[34] D. Butcher, A. Spencer, R. Chen, Influence of asymmetric valve strategon large-scale and turbulent in-cylinder flows, International Journal of Engine Research (2017) 1468087417725232.
[35] D. Goodwin, H. K. Moffat, R. L. Speth, Cantera: An object-oriented software toolkit for chemical kinetics, thermodynamics, and transport processes. version 2.2. 1, Cantera Developers, Warrenville, IL.
[36] J. Gatowski, E. N. Balles, K. Chun, F. Nelson, J. Ekchian, J. B. Heywood, Heat release analysis of engine pressure data, Tech. rep., SAE Technical paper (1984).
[37] A. N. Johansson, P. Dahlander, Experimental investigation on the influence of boost on emissions and combustion in an sgdi-engine operated in stratified mode, Tech. rep., SAE Technical Paper (2015).
[38] K. Hamai, H. Kawajiri, T. Ishizuka, M. Nakai, Combustion fluctuation mechanism involving cycle-to-cycle spark ignition variation due to gas flow motion in si engines, in: Symposium (International) on Combustion, Vol. 21, Elsevier, 1988, pp. 505–512.
[39] P. G. Aleiferis, A. M. Taylor, J. H. Whitelaw, K. Ishii, Y. Urata, Cyclic variations of initial flame kernel growth in a honda vtec-e lean-burn spark-ignition engine, SAE transactions (2000) 1340–1380.
[40] G. Beretta, M. Rashidi, J. Keck, Turbulent flame propagation and combustion in spark ignition engines, Combustion and flame 52 (1983) 217–245.
[41] B. Galmiche, F. Halter, F. Foucher, Effects of high pressure, high temperature and dilution on laminar burning velocities and markstein lengths of iso-octane/air mixtures, Combustion and Flame 159 (11) (2012) 3286–3299.
[42] P. Aleiferis, J. Malcolm, A. Todd, A. Cairns, H. Hoffmann, An optical study of spray development and combustion of ethanol, iso-octane and gasoline blends in a disi engine, Tech. rep., SAE Technical Paper (2008).
[43] C. Poggiani, A. Cimarello, M. Battistoni, C. N. Grimaldi, M. A. Dal Re, M. De Cesare, Optical investigations on a multiple spark ignition system for lean engine operation, Tech. rep., SAE Technical Paper (2016).
[44] K. Nakata, N. Sasaki, A. Ota, K. Kawatake, The effect of fuel properties on thermal efficiency of advanced spark-ignition engines, International Journal of Engine Research 12 (3) (2011) 274–281.
Uwagi
PL Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Kolekcja BazTech
Identyfikator YADDA bwmeta1.element.baztech-3dac338e-5296-4ce6-aabc-0e492e36cbfe
Identyfikatory