PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Działalność naukowa Józefa Schreiera

Autorzy
Identyfikatory
Warianty tytułu
EN
Research of Joseph Schreier
Języki publikacji
PL
Abstrakty
PL
W artykule omówimy osiągnięcia naukowe Józefa Schreiera (1909-1943) oraz podamy spis publikacji. Schreier należał do aktywnych członków Lwowskiej Szkoły Matematycznej, a jego nazwisko znane jest w matematyce w związku z przestrzeniami Schreiera, zbiorami Schreiera i twierdzeniami Schreiera-Ulama. Schreier opublikował szesnaście prac matematycznych, z czego osiem wspólnie ze Stanisławem Marcinem Ulamem i jedną wspólnie z Zygmuntem Wilhelmem Birnbaumem. Ponadto razem z Marcelim Starkiem (1908-1974) opracował, na podstawie wykładów Steinhausa wygłoszonvch w roku akademickim 1928/29, skrypt Szeregi Fouriera wydany przez Koło Matematyczno-Fizyczne Studentów Uniwersytetu Jana Kazimierza we Lwowie w 1930 roku. Schreier napisał prace dotyczące następujących dziedzin matematyki: analiza funkcjonalna, teoria miary, kombinatoryka, geometria, rachunek prawdopodobieństwa, teoria półgrup i grup, teoria przekształceń, topologia i teoria gier.
Rocznik
Strony
45--68
Opis fizyczny
Bibliogr. 148 poz.
Twórcy
  • Departament of Engineering Sciences and Mathematics, Luleå University of Technology, Luleå, Szwecja, lech.maligranda@ltu.se
Bibliografia
  • [1] F. Albiac, N. J. Kalton, Topics in Banach Space Theory, Springer, New York 2006.
  • [2] D. J. Aldous, Unconditional bases and martingales in Lp(F), Math. Proc. Cambridge Phil. Soc. 85 (1979), 117-123.
  • [3] D. Alspach, E. Odell, Averaging weakly null sequences, Lecture Notes in Math. 1332 (1988), 126-144, [Schreier, str. 127, 138, 144].
  • [4] D. E. Alspach, S. Argyros, Complexity of weakly null sequences, Dissertationes Math. (Rozprawy Mat.) 321 (1992), [Schreier construction, str. 3, 21; Schreier example, str. 3,4, 27; Schreier sequence, str. 21, 22, 26].
  • [5] G. Androulakis, F. Sanacory, An extension of Schreier unconditionality, Positivity 12 (2008), nr 2,313-340, [Schreier, str. 313].
  • [6] J. Araújo, J. Konieczny, Automorphism groups of centralizers of idempotents, J. Algebra 269 (2003), nr 1, 227-239, [Schreier, str. 228, 239].
  • [7] J. Araújo, J. Konieczny, A method of finding automorphism groups of endomorphism monoids of relational systems, Discrete Math. 307 (2007), nr 13, 1609-1620, [Schreier, str. 1609, 1610, 1620].
  • [8] J. Araújo, J. Konieczny, Automorphisms of endomorphism monoids of 1-simple free algebras, Comm. Algebra 37 (2009), nr 1, 83-94, [Schreier, str. 83, 88, 94].
  • [9] S. Argyros, Banach spaces of the type of Tsirelson (1992), preprint.
  • [10] S. A. Argyros, I. Deliyanni, Banach spaces of the type of Tsirelson, preprint submitted on 6 July 1992, 6 pages at arXiv:math.9207206 [Schreier set, str. 1].
  • [11] S. A. Argyros, I. Deliyanni, Examples of asymptotic l1 Banach spaces, Trans. Amer. Math. Soc. 349 (1997), nr 3, 973-995, [Schreier families, str. 974-975, 977].
  • [12] A. Argyros, G. Godefroy, H. Rosenthal, Descriptive set theory and Banach spaces, [w:] Handbook of the Geometry of Banach Spaces, t. 2, North-Holland, Amsterdam 2003, 1007-1069, [Schreier, str. 1051, 1055, 1057, 1064, 1069].
  • [13] S. Argyros, S. Todorcevic, Ramsey Methods in Analysis, Birkhäuser, Basel 2005, [Schreier families, str. 1051, 1057 i 1064].
  • [14] S. V. Astashkin, L. Maligranda, Structure of Cesàro function spaces, Indag. Math. (N.S.) 20 (2009), nr 3, 329-379.
  • [15] S. V. Astashkin, F. A. Sukochev, Banach-Saks property in Marcinkiewicz spaces, J. Math. Anal. Appl. 336 (2007), nr 2, 1231-1258.
  • [16] G. Aumann, On a topological characterization of compact convex point sets, Proc. N. A. S. 21 (1935), 358-359. [Schreier, str. 358, 359].
  • [17] G. Aumann, On a topological characterization of compact convex point sets, Ann. of Math. (2) 37 (1936), nr 2, 443-447, [Schreier, str. 443].
  • [18] R Baer, Die Kompositionsreihe der Gruppe aller eineindeutigen Abbildungen einer unendlichen Menge auf sich, Studia Math. 5 (1934), 15-17, [Schreier i Ulam, str. 15].
  • [19] A. Baernstein II, On reflexivity and summability, Studia Math. 42 (1972), 91-94.
  • [20] S. Banach, Teorja Operacyj. I. Operacje Liniowe, Wyd. Kasy Mianowskiego, Warszawa 1931, [Schreier, str. 225].
  • [21] S. Banach, S. Saks, Sur la convergence forte dans les champs Lp, Studia Math. 2 (1930), 51-57.
  • [22] B. Beauzamy, Propriétés des espaces d’interpolation réels dans le cadre général, C. R. Acad. Sci. Paris Sér. A-B 284 (1977), nr 23, A1503-A1505.
  • [23] B. Beauzamy, Espaces d’interpolation réels: topologie et géométrie [Real interpolation spaces: topology and geometry], Lecture Notes in Math., t. 666, Springer-Verlag, Berlin 1978.
  • [24] B. Beauzamy, Banach-Saks properties and spreading models, Math. Scand. 44 (1979) nr 2, 357-384, [Schreier and Schreier spaces, str. 379, 380, 384].
  • [25] B. Beauzamy, Propriété de Banach-Saks, Studia Math. 66 (1980), nr 3, 227-235.
  • [26] B. Beauzamy, J.-T. Lapresté, Modèles Étalés des Espaces de Banach [Spreading Models of Banach Spaces], Hermann, Paris 1983.
  • [27] E. A. Bertram, On a theorem of Schreier and Ulam for countable permutations, J. Algebra 24 (1973), 316-322.
  • [28] C. Bessaga, A. Pełczyński, Spaces of continuous functions. IV. On isomorphical classification of spaces of continuous functions, Studia Math. 19 (1960), 53-62, [Schreier, str. 61, 62].
  • [29] A. Bird, N. J. Laustsen, An amalgamation of the Banach spaces associated with James and Schreier, Part I: Banach-space structure, Banach Center Publ. 91 (2010), 45-76.
  • [30] A. Bird, N. J. Laustsen, A. Zsák, Some remarks on James-Schreier spaces, J. Math. Anal. Appl. 371 (2010), nr 2, 609-613.
  • [31] Z. W. Birnbaum, H. S. Zuckerman, On the properties of a collective, Amer. J. Math. 62 (1940), 787-791, [Schreier, str. 790].
  • [32] M. Blum, R. W. Floyd, V. Pratt, R. L. Rivest, R. E. Tarjan, Linear time bounds for median computations, Proc. 4th Ann. ACM Symp. Theory Comput. (Denver 1972), 119-124, [Schreier, str. 119, 124].
  • [33] M. Blum, R. W. Floyd, V. Pratt, R. L. Rivest, R. E. Tarjan, Time bounds for selection, J. Comput. System Sci. 7 (1973), nr 4, 448-461, [Schreier, str. 448, 461].
  • [34] K. Borsuk, Sur un problème de M. J. Schreier, Fund. Math. 24 (1934), 59-64.
  • [35] J. Bourgain, The Szlenk index and operators on C(K)-spaces, Bull. Soc. Math. Belg. B 31 (1979), nr 1, 87-117.
  • [36] P. J. Cameron, S. Tarzi, The theorem of Baer, Schreier and Ulam for bounded amorphous sets, manuskrypt 2012, 9 stron.
  • [37] P. G. Casazza, T. J. Shura, Tsirelson’s space, Lecture Notes in Math., t. 1363, Springer-Verlag, Berlin 1989, [Schreier i Schreier space, str. 1-3, 6, 8].
  • [38] J. M. F. Castillo, A variation on Schreier’s space, Riv. Mat. Univ. Parma (5) 2 (1993), 319-324.
  • [39] J. M. F. Castillo, M. González, An approach to Schreier’s space, Extracta Math. 6 (1991), nr 2-3, 166-169.
  • [40] J. M. F. Castillo, M. González, Three-Space Problems in Banach Space Theory, Lecture Notes in Math., t. 1667, Springer, Berlin 1997, [Schreier space S, str. 119-120, 206].
  • [41] J. M. F. Castillo, F. Sánchez, M. González, M-ideals of Schreier type and the Dunford-Pettis property, [w:] Non-Associative Algebra and its Applications (Oviedo, 1993), Math. Appl., t. 303, Kluwer Acad. Publ., Dordrecht 1994, 80-85.
  • [42] R. Causey, Estimation of the Szlenk index of Banach spaces via Schreier spaces, Studia Math. 216 (2013), nr 2, 149-178.
  • [43] S. Chantip, G. R. Wood, Automorphisms of the semigroup of all onto mappings of a set, Bull. Austral. Math. Soc. 14 (1976), nr 3, 399-403, [Schreier i Ulam, str. 399, 403].
  • [44] D. E. Cohen, Combinatorial Group Theory. A Topological Approach, Cambridge University Press 1989, [Schreier’s subgroup theorem 170, 212, Schreier’s subgroup theorem, weak form Schreier transversal 169, 173, 187].
  • [45] Y. Cui, H. Hudzik, On the Banach-Saks and weak Banach-Saks properties of some Banach sequence spaces, Acta Sci. Math. (Szeged) 65 (1999), 179-187.
  • [46] Y. Cui, C. Meng, R. Płuciennik, Banach-Saks property and property (ß) in Cesàro sequence spaces, Southeast Asian Bull. Math. 24 (2000), nr 2, 201-210.
  • [47] J. Diestel, Geometry of Banach Spaces-Selected Topics, Lecture Notes in Math., t. 485, Springer-Verlag, Berlin-New York 1975, [Schreier, str. 85 i 93].
  • [48] J. Diestel, A survey of results related to the Dunford-Pettis property, Contemporary Math. 2 (1980), 15-60, [Schreier, str. 27].
  • [49] J. Diestel, Sequences and Series in Banach Spaces, Springer-Verlag, New York 1984, [Schreier, str. 122 i 123].
  • [50] J. D. Dixon, B. Mortimer, Permutation Groups, Springer-Verlag, New York 1996, [Schreier i Ulam, str. 259, 337].
  • [51] P. G. Dodds, E. M. Semenov, F. A. Sukochev, The Banach-Saks property in rear-rangement invariant spaces, Studia Math. 162 (2004), nr 3, 263-294.
  • [52] D. Dor, U. Zwick, Selecting the median, SIAM J. Comput. 28 (1999), nr 5, 1722-1758.
  • [53] D. Dor, U. Zwick, Median selection requires (2 + ɛ) N comparisons, SIAM J. Discrete Math. 14 (2001), nr 3, 312-325.
  • [54] M. Droste, R. Göbel, On a theorem of Baer, Schreier, and Ulam for permutations, J. Algebra 58 (1979), nr 2, 282-290.
  • [55] N. Dunford, J. T. Schwartz, Linear Operators, Part I: General Theory, Interscience, New York 1958, [Schreier, str. 462 i 806].
  • [56] V. Farmaki, S. Negrepontis, Schreier sets in Ramsey theory, Trans. Amer. Math. Soc. 360 (2008), nr 2, 849-880.
  • [57] N. R. Farnum, The Banach-Saks theorem in C(S), Canad. J. Math 26 (1974), 91-97, [Schreier, str. 91, 97].
  • [58] N. J. Fine, G. E. Schweigert, On the group of homeomorphisms of an arc, Ann. of Math. (2) 62 (1955), 237-253, [Schreier i Ulam, str. 237, 239, 242, 253].
  • [59] F. Galvin, Generating countable sets of permutations, J. London Math. Soc. 51 (1995), nr 2, 230-242.
  • [60] I. Gasparis, A dichotomy theorem for subsets of the power set of the natural numbers, Proc. Amer. Math. Soc. 129 (2001), nr 3, 759-764, [Schreier families, str. 759-761].
  • [61] I. Gasparis, Operators on C(K) spaces preserving copies of Schreier spaces, Trans. Amer. Math. Soc. 357 (2005), nr 1, 1-30.
  • [62] I. Gasparis, D. H. Leung, On the complemented subspaces of the Schreier spaces, Studia Math. 141 (2000), nr 3, 273-300.
  • [63] I. Gasparis, E. Odell, B. Wahl, Weakly null sequences in the Banach space C(K), [w:] Methods in Banach Space Theory, London Math. Soc. Lecture Note Ser., t. 337, Cambridge Univ. Press, Cambridge 2006, 97-131, [Schreier, str. 98-101, 131].
  • [64] B. V. Godun, S. A. Rakov, The Banach-Saks property and the three spaces problem, Mat. Zametki 31 (1982), nr 1, 61-74, po rosyjsku; tłum. ang. w Math. Notes 31 (1982), nr 1-2, 32-39.
  • [65] M. González, J. Gutiérrez, Polynomials on Schreier’s space, Rocky Mountain J. Math. 30 (2000), nr 2, 571-585.
  • [66] A. Granas, J. Dugundji, Fixed Point Theory, Springer-Verlag, New York 2003, [Schreier i Ulam, str. 439].
  • [67] J. de Groot, Groups represented by homeomorphism groups, Math. Ann. 138 (1959), 80-102, [Schreier i Ulam, str. 90, 102].
  • [68] I. Guran, Ya. Prytula, Józef Schreier „On finite base in topological groups”, Mat. Studi 39 (2013), nr 1, 3-9.
  • [69] A. Hadian, M. Sobel, Selecting the t-th largest using binary errorless comparisons, [w:] Combinatorial Theory and its Applications II (Proc. Colloq., Balatonfüred 1969), North-Holland, Amsterdam 1970, 585-599.
  • [70] A. Hadian, M. Sobel, Ordering the t largest of n items using binary comparisons, [w:] Proc. Second Chapel Hill Conf. on Combinatorial Mathematics and its Applications, Univ. North Carolina, Chapel Hill, N.C. 1970, 238-251.
  • [71] L. Hyafil, Bounds for selection, SIAM J. Comput. 5 (1976), 109-114.
  • [72] V. Jarnik, V. Knichal, Sur les superpositions des fonctions continues non décroissantes, Fund. Math. 25 (1935), 190-197.
  • [73] R. Judd, A dichotomy on Schreier sets, Studia Math. 132 (1999), nr 3, 245-256.
  • [74] R. Judd, E. Odell, Concerning Bourgain’s l1-index of a Banach space, Israel J. Math. 108 (1998), 145-171.
  • [75] S. Kakutani, Weak convergence in uniformly convex spaces, Tohoku Math. J. 45 (1938), 188-193, [Schreier, str. 188].
  • [76] G. O. H. Katona, Combinatorial search problems, [w:] Survey of Combinatorial Theory (Proc. Internat. Sympos., Colorado State Univ., Fort Collins, Colo., 1970), North-Holland, Amsterdam 1973, 285-308, [Schreier, str. 298, 308].
  • [77] D. G. Kirkpatrick, A unified lower bound for selection and set partitioning problems, J. Assoc. Comput. Mach. 28 (1981), nr 1, 150-165, [Schreier, str. 151, 165].
  • [78] S. S. Kislicyn, On the selection of the kth element of an ordered set by pairwise comparisons, Sibirsk. Mat. Zh. 5 (1964), 557-564, (po rosyjsku).
  • [79] V. Knichal, Sur les superpositions des automorphies continues d’un intervalle fermé, Fund. Math. 31 (1938), 79-83.
  • [80] D. E. Knuth, The Art of Computer Programming, Vol. 3. Sorting and Searching, Addison-Wesley 1973, [Schreier i twierdzenie Schreiera z dowodem, str. 211-212].
  • [81] D. E. Knuth, The Art of Computer Programming, Vol. 3. Sorting and Searching, 2nd ed„ Addison-Wesley, Mass.-London-Don Mills 1998, [Schreier i twierdzenie Schreiera z dowodem, str. 209-210].
  • [82] D. E. Knuth, Sztuka Programowania, Tom 3. Sortowanie i Wyszukiwanie, Wyd. Naukowo-Techniczne 2002, jest to polskie tłumaczenie książki [81], [Schreier, str. 220; twierdzenie Schreiera-Kislicyna z dowodem, str. 221-222].
  • [83] P.-K. Lin, Köthe-Bochner Function Spaces, Birkhäuser, Boston 2004, [Schreier space, str. 25, 28, 65, 66].
  • [84] E. S. Ljapin, Abstract characterization of certain semigroups of transformations, Leningrad. Gos. Ped. Inst. im. Gercena Uchen. Zap. 103 (1955), 5-29, (po rosyjsku).
  • [85] K. D. Magill Jr, A survey of semigroups of continuous selfmaps, Semigroup Forum 11 (1975/76), nr 3, 189-282, [Schreier, str. 271, 278, 279].
  • [86] K. D. Magill Jr, Current state and open problems of the theory of semigroups of continuous mappings, Uspekhi Mat. Nauk 35 (1980), nr 3, 78-83, English transl., in Russian Math. Surveys 35 (1980), no. 3, 91-97, [Schreier i Ulam, str. 91, 97].
  • [87] K. D. Magill Jr, Some open problems and directions for further research in semigroups of continuous selfmaps, Banach Center Publ. 9 (1982), 439-454.
  • [88] K. D. Magill Jr, Properties of a pair of functions which generate a dense subsemigroup of S(X), Semigroup Forum 52 (1996), 101-104.
  • [89] K. D. Magill Jr, S. Subbiah, Finitely generated dense subsemigroups of S(X), Questions Answers Gen. Topology 1 (1983), nr 2, 77-87.
  • [90] A. I. Malcev, Symmetricgroupoids, Mat. Sb. (N.S.) 31 (1952), 136-151, (po rosyjsku); English transl., in Amer. Math. Soc. Translat., II. Ser., 113 (1979), 235-250.
  • [91] L. Maligranda, Józef Schreier (1909-1943) - życie i twórczość, 50-minutowy odczyt wygłoszony 21 maja 2012 roku na XXVI Konferencji Naukowej z Historii Matematyki na temat: Matematyka polska w latach 1851-1950, Iwonicz Zdrój, 21-25 maja 2012, 55 str.
  • [92] L. Maligranda, Józef Schreier (1909-1943). Biografia, Wiad. Mat. 49 (2013), nr 2, 47-60.
  • [93] A. W. Marshall, A conversation with Z. William Birnbaum, Statistical Science 5 (1990), nr 2, 227-241, [Schreier, str. 231, 235].
  • [94] G. Mashevitzky, B. Plotkin, E. Plotkin, Automorphisms of categories of free algebras of varieties, Electron. Res. Announc. Amer. Math. Soc. 8 (2002), 1-10, [idea Schreiera, str. 8],
  • [95] G. Mashevitzky, B. M. Schein, Automorphisms of the endomorphism semigroup of a free monoid or a free semigroup, Proc. Amer. Math. Soc. 131 (2003), nr 6, 1655-1660, [Schreier, str. 1659, 1660].
  • [96] G. Mashevitzky, B. M. Schein, G. Zhitomirski, Automorphisms of the endomorphism semigroup of a free inverse semigroup, Comm. Algebra 34 (2006), nr 10, 3569-3584, [Schreier, str. 3570, 3584].
  • [97] D. W. Matula, Selecting the tth best in average n + O(log log n) comparisons, Report No. AMCS - 73 - 9, Dept, of Applied. Math, and Comp. Sci., Washington University, (St. Louis), 1973, 1-34 [Schreier, str. 2, 9, 34].
  • [98] R. D. Mauldin, Commentary to the 68 problem of Ulam from the Scottish Book, [w:] The Scottish Book. Mathematics from the Scottish Café, Birkhäuser, Boston 1981, 139-140.
  • [99] R. D. Mauldin (red.), The Scottish Book. Mathematics from the Scottish Café, Birkhäuser, Boston 1981, [Schreier, str. 67-68, 75, 77, 119, 138-139, 198-199; Schreier i Ulam, str. 93, 99-101, 140, 177-178, 180-181, 184, 202, 247-248].
  • [100] J. D. Mitchell, Y. Péresse, Generating countable sets of surjective functions, Fund. Math. 213 (2011), nr 1, 67-93.
  • [101] J. D. Mitchell, Y. Péresse, Sierpiński’s rank for groups and semigroups, Wiad. Mat. 48 (2012), nr 2, 209-215, [Schreier i Ulam, str. 209, 214].
  • [102] L. Montejano, About a problem of Ulam concerning flat sections of manifolds, Comment. Math. Helv. 65 (1990), nr 3, 462-473, [Schreier, str. 462, 473].
  • [103] J. W. Moon, Topics on Tournaments, Holt, Rinehart and Winston, New York-Montreal-London 1968, [Schreier, str. 48, 100].
  • [104] T. Motoki, A note on upper bounds for the selection problem, Inform. Process. Lett. 15 (1982), nr 5, 214-219.
  • [105] J. Mycielski, [w:] The Scottish Book. Mathematics from the Scottish Café, Birkhäuser, Boston 1981, 138-139.
  • [106] J. Myhill, A. Adler, Composition of functions. Problem 6244, Amer. Math. Soc. 87 (1980), nr 8, 676-678.
  • [107] T. Nishino, Algebraic structure of the group of p-permutations on tally sets, RIMS Kokyuroku 695 (1989), 155-161, [Schreier, str. 156, 161].
  • [108] E. Odell, On Schreier unconditional sequences, Contemp. Math. 144 (1993), 197-201.
  • [109] E. Odell, On subspaces, asymptotic structure, and distortion of Banach spaces; Connections with logic, [w:] Analysis and Logic, Cambridge Univ. Press, Cambridge 2002, 189-264, [Schreier space, Schreier’s classes, Schreier’s norm, Schreier games, str. 199, 200, 226, 227, 235, 263].
  • [110] E. Odell, Th. Schlumprecht, Asymptotic properties of Banach spaces under renormings, J. Amer. Math. Soc. 11 (1998), nr 1, 175-188, [Schreier space S, str. 177].
  • [111] M. I. Ostrovskii, Three space problem for the weak Banach-Saks property, Mat. Zametki 38 (1985), nr 5, 721-725, po rosyjsku; tłum. ang. w Math. Notes 38 (1985), nr 5-6, 905-907, [Schreier space S].
  • [112] M. I. Ostrovskii, A comparison between the weak and the continuous Banach-Saks properties, Teor. Funktsii Funktsional. Anal, i Prilozhen 48 (1987), 130-134, po rosyjsku; tłum. ang. w J. Soviet Math. 49 (1990), nr 2, 938-940 [Schreier space S].
  • [113] M. Paterson, Progress in selection, [w:] Algorithm Theory – SWAT’96 (Reykjavik 1996), Lecture Notes in Comput. Sci., t.1097, Springer, Berlin 1996, 368-379, [Schreier, str. 368, 379].
  • [114] V. Pestov, Some universal constructions in abstract topological dynamics, Contemp. Math., t. 215, Amer. Math. Soc., Providence 1998, [103 problem z Księgi Szkockiej Schreiera i Ulama].
  • [115] A. Pełczyński, W. Szlenk, An example of a non-shrinking basis, Rev. Roumaine Math. Pures Appl. 10 (1965), 961-966, [Schreier, str. 961, 966].
  • [116] A. Pietsch, History of Banach Spaces and Linear Operators, Birkhäuser, Boston 2007, [Schreier, str. 535, 571, 807].
  • [117] B. I. Plotkin, Groups of automorphisms of algebraic systems, Wolters-Noordhoff, Groningen 1972, [Schreier and Ulam, str. 252, 492].
  • [118] B. Plotkin, G. Zhitomirski, On automorphisms of categories of universal algebras, Internat. J. Algebra Comput. 17 (2007), nr 5-6, 1115-1132, [Schreier theorem 10, str. 1131].
  • [119] A. I. Popov, Schreier singular operators, Houston J. Math. 35 (2009), nr 1, 209-222.
  • [120] E. B. Rabinovich, De Bruijn’s problem on imbedding for infinite permutation groups, Doki. Akad. Nauk BSSR 31 (1987), nr 5, 397-400, (po rosyjsku).
  • [121] E. B. Rabinovich, On a theorem of Ulam and Schreier, Izv. Akad. Nauk BSSR, Ser. Fiz.-Mat. Nauk 4 (1988), 43-46, (po rosyjsku).
  • [122] S. A. Rakov, The Banach-Saks exponent of some Banach spaces of sequences, Mat. Zametki 32 (1982), nr 5, 613-625, (po rosyjsku).
  • [123] P. V. Ramanan, L. Hyafil, New algorithms for selection, J. Algorithms 5 (1984), nr 4, 557-578.
  • [124] E. M. Reingold, Establishing lower bounds on algorithms. A survey, [w:] Proceedings AFIPS’72 (Spring) Proceedings of the May 16-18, Spring Joint Computer Conference 1972, 471-481, [Schreier, str. 473, 481].
  • [125] H. P. Rosenthal, The Banach spaces C(K), [w:] Handbook of the Geometry of Banach Spaces, t. 2, North-Holland, Amsterdam 2003, 1547-1602, [Schreier, str. 1581, 1602].
  • [126] B. M. Schein, B. Teclezghi, Endomorphisms of finite full transformation semigroups, Proc. Amer. Math. Soc. 126 (1998), nr 9, 2579-2587, [Schreier, str. 2579, 2587].
  • [127] B. Schroeder, Normal structure and automorphisms of the symmetric groups, manuskrypt 2003,10 stron.
  • [128] E. Seiden, Recenzja pracy S. S. Kislicyn, On the selection of the kth element of an ordered set by pairwise comparisons, Sibirsk. Mat. Zh. 5 (1964), 557-564, MR0164907 (29#2198).
  • [129] Z. Semadeni, Banach Spaces of Continuous Functions, Monografie Matematyczne, t. 55, PWN-Polish Scientific Publishers, Warsaw 1971, [Schreier, str. 333 i 543].
  • [130] T. J. Shura, D. Trautman, The λ-property in Schreier’s space S and the Lorentz space d(a, 1), Glasgow Math. J. 32 (1990), nr 3, 277-284.
  • [131] W. Sierpiński, Zasady Algebry Wyższej, Monografie Matematyczne, t. XI, Warszawa-Wrocław 1946, [Schreier i Ulam, str. 305].
  • [132] J. Słupecki, On the systems of tournaments, Colloq. Math. 2 (1951), 286-290.
  • [133] M. Stark, Hugo Steinhaus jako nauczyciel w okresie lwowskim, Wiad. Mat. 17 (1973), 77-84.
  • [134] H. Steinhaus, Kalejdoskop Matematyczny, PZWS, Warszawa 1954 i 1956, [Schreier, str. 301].
  • [135] A. Stepanov, P. McJones, Elements of Programming, Addison-Wesley 2009, [Schreier, str. 55].
  • [136] M. M. Sysło, Algorytmy poszukiwania i porządkowania. Elementy języka programowania, Warszawska Wyższa Szkoła Informatyki, Warszawa 2010, [Schreier, str. 19].
  • [137] F. Szechtman, On the automorphism group of the centralizer of an idempotent in the full transformation monoid, Semigroup Forum 70 (2005), nr 2, 238-242, [Schreier, str. 238, 241].
  • [138] W. Szlenk, Sur les suites faiblement convergentes dans l’espace L, Studia Math. 25 (1965), 337-341.
  • [139] E. V. Tokarev, The Banach-Saks property in Banach lattices, Sibirsk. Mat. Zh. 24 (1983), nr 1, 187-189, (po rosyjsku).
  • [140] S. Ulam, A Collection of Mathematical Problems, Interscience, New York 1960, [książka zadedykowana pamięci J. Schreiera]; przedruk w [141, str. 505-670].
  • [141] S. Ulam, Sets, Numbers, and Universes, Selected Works, MIT Press, Cambridge 1974.
  • [142] S. M. Ulam, The Scottish Book, A LASL Monograph, Los Alamos 1977, [Schreier, str. 1, 3, 19, 32; Schreier i Ulam, str. 7, 27-29, 33].
  • [143] Kopia rękopisu „Księgi Szkockiej", http://kielich.amu.edu.pl/Stefan_Banach/ archiwalia.html.
  • [144] O. Vladimirskaya, Some new generalizations of the Lyapunov convexity theorem, Mat. Fiz. Anal. Geom. 5 (1998), nr 1-2, 15-24, [Schreier space S, Baernstein spaces Bp].
  • [145] G. R. Wood, A note on automorphisms of semigroups and near-rings of mappings, Studia Math. 62 (1978), nr 3, 209-218, [Schreier, str. 211, 218].
  • [146] W. A. Woyczyński, Szukając Birnbauma, Wiad. Mat. 33 (1997), 137-154, [Schreier, str. 146].
  • [147] F. F. Yao, On lower bounds for selection problems, Technical Report, MIT, Cambridge 1974, 1-55 [Schreier, str. 3, 5, 54].
  • [148] C. K. Yap, New upper bounds for selection, Comm. ACM 19 (1976), nr 9, 501-508, [Schreier, str. 501, 502, 508].
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3c763860-be84-4a1f-85b9-7c38b28d70e5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.