Narzędzia help

Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
cannonical link button

http://yadda.icm.edu.pl:80/baztech/element/bwmeta1.element.baztech-3b1c9b29-2d77-4030-aad2-8c39f1f56815

Czasopismo

Archives of Civil and Mechanical Engineering

Tytuł artykułu

Dynamic compressive mechanical behaviour and modelling of basalt–polypropylene fibre-reinforced concrete

Autorzy Fu, Q.  Niu, D.  Zhang, J.  Huang, D.  Wang, Y.  Hong, M.  Zhang, L. 
Treść / Zawartość
Warianty tytułu
Języki publikacji EN
Abstrakty
EN Dynamic compressive behaviour of basalt–polypropylene fibre-reinforced concrete (BPFRC) was experimentally investigated using a 75-mm-diameter split-Hopkinson pressure bar. The results showed that the addition of basalt fibre (BF) and polypropylene fibre (PF) is effective at improving the impact-resistance behaviour of concrete. The dynamic compressive strength, critical strain, and energy absorption capacity of BPFRC increased with increasing strain rate. At strain rates of 20–140 s−1, the addition of BF and PF significantly increased the dynamic compressive strength, critical strain, and energy absorption capacity of concrete. The dynamic increase factor of BPFRC increased linearly with the decimal logarithm of strain rate. The hybrid addition of BF and PF significantly improved the strain rate effect of the dynamic compressive strength. The strengthening and toughening mechanisms of BF and PF are discussed in detail. The proposed dynamic damage constitutive model can be used to accurately describe the dynamic stress–strain relationship of BPFRC.
Słowa kluczowe
PL ściskanie   włókno bazaltowe   włókno polipropylenowe   odkształcenia  
EN dynamic compressive mechanical behaviour   basalt fibre   polypropylene fibre   strain rate effect   dynamic damage constitutive model  
Wydawca Elsevier
Czasopismo Archives of Civil and Mechanical Engineering
Rocznik 2018
Tom Vol. 18, no. 3
Strony 914--927
Opis fizyczny Bibliogr. 39 poz., rys., tab., wykr.
Twórcy
autor Fu, Q.
  • Department of Civil Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China, fuqiangcsu@163.com
autor Niu, D.
  • Department of Civil Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China, niuditao@163.com
autor Zhang, J.
  • Department of Civil Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China
autor Huang, D.
  • Department of Civil Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China
autor Wang, Y.
  • College of Materials and Mineral Resources, Xi'an University of Architecture and Technology, Xi'an 710055, PR China
autor Hong, M.
  • Department of Civil Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China
autor Zhang, L.
  • Department of Civil Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China
Bibliografia
[1] W.H. Zhang, Y.S. Zhang, Research on the static and dynamic compressive properties of high performance cementitious composite (HPCC) containing coarse aggregate, Arch. Civil Mech. Eng. 15 (2015) 711–720.
[2] W.G. Li, Z.Y. Luo, C. Long, C.Q. Wu, W.H. Duan, S.P. Shah, Effects of nanoparticle on the dynamic behaviors of recycled aggregate concrete under impact loading, Mater. Des. 112 (2016) 58–66.
[3] Z.M. Wu, C.J. Shi, W. He, D.H. Wang, Static and dynamic compressive properties of ultra-high performance concrete (UHPC) with hybrid steel fiber reinforcements, Cem. Concr. Compos. 79 (2017) 148–157.
[4] J.Z. Lai, W. Sun, Dynamic behaviour and visco-elastic damage model of ultra-high performance cementitious composite, Cem. Concr. Res. 39 (11) (2009) 1044–1051.
[5] H.Y. Su, J.Y. Xu, W.B. Ren, Mechanical properties of ceramic fiber-reinforced concrete under quasi-static and dynamic compression, Mater. Des. 57 (2014) 426–434.
[6] J. Branston, S. Das, S.Y. Kenno, C. Taylor, Mechanical behaviour of basalt fibre reinforced concrete, Constr. Build. Mater. 124 (2016) 878–886.
[7] C.H. Jiang, K. Fan, F. Wu, D. Chen, Experimental study on the mechanical properties and microstructure of chopped basalt fibre reinforced concrete, Mater. Des. 58 (2014) 187–193.
[8] J.S. Sim, C.W. Park, D.Y. Moon, Characteristics of basalt fiber as a strengthening material for concrete structures, Compos. Part B: Eng. 36 (6–7) (2005) 504–512.
[9] M. Hsie, C.J. Tu, P.S. Song, Mechanical properties of polypropylene hybrid fiber-reinforced concrete, Mater. Sci. Eng.: A 494 (2008) 153–157.
[10] A.M.L. Buendía, M.D.R. Sánchez, V. Climent, C. Guillem, Surface treated polypropylene (PP) fibres for reinforced concrete, Cem. Concr. Res. 54 (2013) 29–35.
[11] C.X. Qian, P. Stroeven, Development of hybrid polypropylene- steel fibre-reinforced concrete, Cem. Concr. Res. 30 (1) (2000) 63–69.
[12] M. Nili, V. Afroughsabet, The long-term compressive strength and durability properties of silica fume fiber-reinforced concrete, Mater. Sci. Eng.: A 531 (2012) 107–111.
[13] D.Y. Yoo, N. Banthia, Mechanical properties of ultra-high-performance fiber-reinforced concrete: A review, Cem. Concr. Compos. 73 (2016) 267–280.
[14] Y.A. Salloum, T. Almusallam, S.M. Ibrahim, H. Abbas, S. Alsayed, Rate dependent behavior and modeling of concrete based on SHPB experiments, Cem. Concr. Compos. 55 (2015) 34–44.
[15] P. Rossi, E. Toutlemonde, Effect of loading rate on the tensile behaviour of concrete: description of the physical mechanisms, Mater. Struct. 29 (1996) 116–118.
[16] W.M. Li, J.Y. Xu, Strengthening and toughening in basalt fiber-reinforced concrete, J. Chin. Ceram. Soc. 36 (4) (2008) 476–481.
[17] W.M. Li, J.Y. Xu, Dynamic behavior and constitutive model of basalt fiber reinforced concrete under impact loading, Eng. Mech. 26 (1) (2009) 86–91.
[18] W.M. Li, J.Y. Xu, Impact characterization of basalt fiber reinforced geopolymeric concrete using a 100-mm-diameter split Hopkinson pressure bar, Mater. Sci. Eng.: A 513–514 (2009) 145–153.
[19] W.M. Li, J.Y. Xu, L.J. Shen, Q. Li, Dynamic mechanical properties of basalt fiber reinforced concrete using a split Hopkinson pressure bar, Acta Mater. Compos. Sin. 25 (2) (2008) 135–142.
[20] H. Zhang, Y.W. Gao, F. Li, F. Lu, Experimental study on dynamic properties and constitutive model of polypropylene fiber concrete under high strain rate, J. Central South Univ. (Sci. Technol.) 44 (8) (2013) 3464–3473.
[21] J.S. Hu, X.M. Yang, Z.S. Zhou, D.G. Tang, Experimental study on tenacity increase characteristics of steel fiber reinforced concrete and polypropylene fiber reinforced concrete under impact load, J. Build. Struct. 26 (2) (2005) 101–105.
[22] H.Y. Su, J.Y. Xu, E.L. Bai, Z.G. Gao, Y. Chen, Study of impact mechanical response and statistical damage constitutive model of ceramic fiber reinforced concrete, Eng. Mech. 30 (6) (2013) 148–153.
[23] J.K. Zhou, X.D. Chen, Stress–strain behavior and statistical continuous damage model of cement mortar under high strain rates, J. Mater. Civil Eng. 25 (1) (2013) 120–130.
[24] X.D. Chen, S.X. Wu, J.K. Zhou, Experimental and modeling study of dynamic mechanical properties of cement paste, mortar and concrete, Constr. Build. Mater. 47 (2013) 419–430.
[25] Chinese National Standard, Test method of mechanical properties on ordinary concrete, GB/T 50081-2002, Beijing, China, 2002.
[26] Q.M. Li, H. Meng, About the dynamic strength enhancement of concrete-like materials in a split Hopkinson pressure bar test, Int. J. Solids Struct. 40 (2) (2003) 343–360.
[27] V.T. Giner, F.J. Baeza, S. Ivorra, E. Zornoza, ó. Galao, Effect of steel and carbon fiber additions on the dynamic properties of concrete containing silica fume, Mater. Des. 34 (2012) 332–339.
[28] P. Garcés, J. Fraile, D. Vilaplana-Ortego, D. Cazorla-Amorós, E. G. Alcocel, L.G. Andión, Effect of carbon fibres on the mechanical properties and corrosion levels of reinforced Portland cement mortars, Cem. Concr. Res. 35 (2) (2005) 324–331.
[29] N. Ranjbar, S. Talebian, M. Mehrali, C. Kuenzel, et al., Mechanisms of interfacial bond in steel and polypropylene fiber reinforced geopolymer composites, Compos. Sci. Technol. 122 (2016) 73–81.
[30] C.A. Ross, D.M. Jerome, J.W. Tedesco, M.L. Hughes, Moisture and strain rate effects on concrete strength, ACI Mater. J. 93 (3) (1996) 293–298.
[31] W. Wu, W.D. Zhang, G.W. Ma, Mechanical properties of copper slag reinforced concrete under dynamic compression, Constr. Build. Mater. 24 (6) (2010) 910–917.
[32] X.Q. Zhou, H. Hao, Modelling of compressive behaviour of concrete-like materials at high strain rate, Int. J. Solids Struct. 45 (17) (2008) 4648–4661.
[33] Y. Gao, J.Y. Xu, E.L. Bai, X. Luo, J.S. Zhu, L.X. Nie, Static and dynamic mechanical properties of high early strength alkali activated slag concrete, Ceram. Int. 41 (2015) 12901–12909.
[34] H.Y. Su, J.Y. Xu, W.B. Ren, Mechanical properties of geopolymer concrete exposed to dynamic compression under elevated temperatures, Ceram. Int. 42 (2016) 3888–3898.
[35] P.H. Bischoff, S.H. Perry, Compressive behavior of concrete at high strain rates, Mater. Struct. 24 (1991) 45–50.
[36] J.P. Romualdi, J.A. Mandel, Tensile strength of concrete affected by uniformly dispersed and closely spaced short length of wire reinforcement, ACI J. Proc. 61 (6) (1964) 657–671.
[37] L.H. Chang, J.K. Chen, Experimental study on constitutive relation of cement mortar, J. Hydraul. Eng. 38 (2) (2007) 217–220.
[38] L.X. Xie, G.M. Zhao, X.R. Meng, Research on damage viscoelastic dynamic constitutive model of soft rock and concrete materials, Chin. J. Rock Mech. Eng. 32 (4) (2013) 857–864.
[39] Z.L. Wang, Y.S. Liu, R.F. Shen, Stress–strain relationship of steel fiber-reinforced concrete under dynamic compression, Constr. Build. Mater. 22 (5) (2008) 811–819.
Uwagi
PL Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019)
Kolekcja BazTech
Identyfikator YADDA bwmeta1.element.baztech-3b1c9b29-2d77-4030-aad2-8c39f1f56815
Identyfikatory
DOI 10.1016/j.acme.2018.01.016