Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
A ship moving over the surface of water generates disturbances that are perceived as noise, both in the air and under water. Due to its density, water is an excellent medium for transmitting acoustic waves over long distances. This article describes the impact of the settings of a ship’s machinery on the nature of the generated noise. Our analysis includes the frequency characteristics of the noise generated by the moving ship. Data were obtained using an underwater measurement system, and the measured objects were two ships moving on specific trajectories with certain machinery settings. The acquired data were analysed in the frequency domain to explore the possibilities of the acoustic classification of ships and diagnostics of source mechanisms.
Czasopismo
Rocznik
Tom
Strony
176--181
Opis fizyczny
Bibliogr. 15 poz., rys.
Twórcy
autor
- Polish Naval Academy, Smidowicza 69, 81-127 Gdynia, Poland
Bibliografia
- 1. Ainslie M. A., McColm J. G. (1998): A simplified formula for viscous and chemical absorption in sea water. The Journal of the Acoustical Society of America, 103(3), 1671-1672. DOI: 10.1121/1.421258.
- 2. Arveson P. T., Vendittis D. J. (2000): Radiated noise characteristics of a modern cargo ship. The Journal of the Acoustical Society of America, 107(1), 118–129. DOI: 10.1121/1.428344.
- 3. Erbe C., Marley S. A., Schoeman R. P., Smith J. N., Trigg L. E., Embling C. B. (2019): The effects of ship noise on marine mammals. Review Frontiers in Marine Science, 6. DOI: 10.3389/fmars.2019.00606.
- 4. Francois R. E., Garrison G. R. (1982): Sound absorption based on ocean measurements: Part II: Boric acid contribution and equation for total absorption. Journal of the Acoustical Society of America, 72(6), 1879-1890. DOI: 10.1121/1.388673.
- 5. Freitag L., Grund M., Von Alt C., Stokey R. (2005): A shallow water acoustic network for mine countermeasures operations with autonomous underwater vehicles. Conference Proceedings of Underwater Defense.
- 6. Gloza I., Buszman K. (2011): The multi-influence passive module for underwater environment monitoring. Hydroacoustics, 14, 47-54.
- 7. Gloza I., Buszman K., Józwiak R. (2013): Tracking underwater noise sources with the use of a passive method. Acta Physica Polonica A, 123(5), 1090-1093. DOI: 10.12693/ APhysPolA.123.1090.
- 8. Gloza I., Józwiak R., Buszman K. (2014): The one-third octave spectrum as a method of vessel identification. Hydroacoustics, 17, 63-68.
- 9. Grządziela A. (2006): Analysis of vibration parameters of ship gas turbine engines. Polish Maritime Research, 2, 22-26.
- 10. ISO 17208-1:2016 (2016): Underwater acoustics—Quantities and procedures for description and measurement of underwater sound from ships.
- 11. Kozaczka E., Grelowska, G. (2018): Propagation of shipgenerated noise in shallow sea. Polish Maritime Research, 2(98), 37-46. DOI: 10.2478/pomr-2018-0052.
- 12. Kuşku H., Yiğit M., Ergün S., Yiğit Ü., Taylor N. (2018): Acoustic noise pollution from marine industrial activities: Exposure and impacts. Aquatic Research, 1(4), 148-161. DOI: 10.3153/AR18017.
- 13. Lus T. (2012): Marine diesel engine diagnostics in operating conditions. Diagnostyka, 2(62), 43-47.
- 14. McKenna M. F. (2012): Underwater radiated noise from modern commercial ships. Journal of the Acoustical Society of America, 131(1), 92-103. DOI: 10.1121/1.3664100.
- 15. Southall B. L. (2004): Shipping noise and marine mammals: A forum for science, management, and technology. Final Report of the National Oceanic and Atmospheric Administration (NOAA) International Symposium. U.S. NOAA Fisheries, Arlington, Virginia, May 18–19.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3ad8843a-f0cc-4e1c-926b-fb5b146bf485