Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Chemical control of polyelectrolyte film properties for an effective cardiovascular implants endothelialization

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
The aim of this study was to improve properties of blood contacting materials such as polyurethane, in a form of intelligent, self-organizing and self-controlling coatings, which allow the selective mobilization and colonization of the endothelial cells on their surface. The prepared multilayer polyelectrolyte scaffolds were cross-linked chemically by EDC/NHS reagents in order to control their physicochemical properties and thus improving potential to endothelialization. Four types of coatings, i.e. non-cross-linked, cross-linked by 260 mM, 400 mM and 800 mM EDC reagent, were investigated. Their comparison was performed based on the results of the surface topography measurements using Atomic Force Microscopy (AFM), cellular morphology and proliferation analysis using Confocal Laser Scanning Microscopy (CLSM) and the mechanical properties examinations. The optimal multilayer rigidity and surface roughness parameters were found for an effective control of the endothelial cells growth. Surface topography analysis indicated an increase in the coating’s roughness due to application of higher EDC cross-linker concentrations. Mechanical studies revealed that cross-linking caused a significant increase in the hardness and elastic modulus. The results from the cellular experiments allowed the conformation that 400 mM cross-linked PLL/HA films possess desired properties.
Opis fizyczny
Bibliogr. 33 poz., rys., tab., wykr.
  • Institute of Metallurgy and Materials Science, Polish Academy of Sciences, 25 Reymonta Street, 30-059 Krakow, Poland
  • Institute of Metallurgy and Materials Science, Polish Academy of Sciences, 25 Reymonta Street, 30-059 Krakow, Poland
  • AGH University of Science and Technology, Faculty of Mechanical Engineering and Robotics, Al. Mickiewicza 30, 30-059 Krakow, Poland
  • The Henryk Niewodniczański Institute of Nuclear Physics, Polish Academy of Sciences, 152 Radzikowskiego Street, 31-342 Krakow, Poland
  • Foundation for Cardiac Surgery Development, 345a Wolnosci Street, 41-800 Zabrze, Poland
  • Institute of Metallurgy and Materials Science, Polish Academy of Sciences, 25 Reymonta Street, 30-059 Krakow, Poland
  • [1] L. Richert, Y. Arntz, P. Schaaf, J.C. Voegel, C. Picart, pH dependent growth of poly(L-lysine)/poly(L-glutamic) acid multilayer films and their cell adhesion properties, Surface Science 570 (2004) 13–29.
  • [2] T. Boudou, T. Crouzier, K. Ren, G. Blin, C. Picart, Multiple functionalities of polyelectrolyte multilayer films: new biomedical applications, Advanced Materials 22 (2010) 441–467.
  • [3] N. Angelova, D. Hunkeler, Rationalizing the design of polymeric biomaterials, Trends in Biotechnology 17 (1999) 409–421.
  • [4] R. Major, Self-assembling surfaces of blood-contacting materials, Journal of Materials Science: Materials in Medicine 24 (2013) 725–733.
  • [5] W. Minuth, R. Strehl, K. Schumacher, Tissue Engineering, Cell Biology to Artificial Organs, Wiley-VCH Verlag GmbH, Weinheim (2005) 113–129.
  • [6] M.L. Brendan, V.S. Michael, A modular tissue engineering construct containing smooth muscle cells and endothelial cells, Annals of Biomedical Engineering 35 (2007) 2039–2049.
  • [7] C. Valfre‘, G. Rizzoli, C. Zussa, P. Ius, E. Polesel, S. Mirone, T. Bottio, G. Gerosa, Clinical results of Hancock II versus Hancock Standard at long-term follow-up, Journal of Thoracic and Cardiovascular Surgery 132 (2006) 595–601.
  • [8] M.A. Borger, J. Ivanov, S. Armstrong, D. Christie-Hrybinsky, C. M. Feindel, T.E. David, Twenty-year results of the Hancock II bioprosthesis, Journal of Heart Valve Disease 15 (2006) 49–56.
  • [9] F.C. Riess, R. Bader, E. Cramer, L. Hansen, B. Kleijnen, G. Wahl, J. Wallrath, S. Winkel, N. Bleese, Hemodynamic performance of the medtronic mosaic porcine bioprosthesis up to ten years, Annals of Thoracic Surgery 83 (2007) 1310–1318.
  • [10] R. Tominaga, K. Kurisu, Y. Ochiai, Y. Tomita, M. Masuda, S. Morita, H. Yasui, A 10-year experience with the Carbomedics cardiac prosthesis, Annals of Thoracic Surgery 68 (2005) 784-789.
  • [11] I. Tsyganov, T. Maitz, E. Wieser, E. Richter, H. Reuther, Correlation between blood compatibility and physical surface properties of titanium-based coatings, Surface and Coatings Technology 200 (2005) 1041–1044.
  • [12] K.B. Chandran, Blood Interfacing Implants, The Biomedical Engineering Handbook, Springer, Heidelberg1–24.
  • [13] C. Picart, B. Senger, K. Sengupta, F. Dubreuil, A. Fery, Measuring mechanical properties of polyelectrolyte multilayer thin films: novel methods based on AFM and optical techniques, Colloids and Surfaces A: Physicochemical and Engineering Aspects 303 (2007) 30–36.
  • [14] H.Lodish,A.Berk,SL.Zipursky,P.Matsudaira,D.Baltimore,J.E. Darnell, Molecular Cell Biology, WH. Freeman, New York, 2000.
  • [15] S.K. Williams, Endothelial cell transplantation, Cell Transplantation 4 (1995) 401–410.
  • [16] S. Kaihara, S. Kim, B.S. Kim, D.J. Mooney, K. Tanaka, J.P. Vacanti, Survival and function of rat hepatocytes cocultured with nonparenchymal cells or sinusoidal endothelial cells on biodegradable polymers under flow conditions, Journal of Pediatric Surgery 35 (2000) 1287–1290.
  • [17] T.P. Richardson, M.C. Peters, A.B. Ennett, D.J. Mooney, Polymeric system for dual growth factor delivery, Nature Biotechnology 19 (2001) 1029–1034.
  • [18] T. Crouzier, K. Ren, C. Nicolas, C. Roy, C. Picart, Layer-by-layer films as a biomimetic reservoir for rhBMP-2 delivery: controlled differentiation of myoblasts to osteoblasts, Small 5 (2009) 598–608.
  • [19] P. Yilgor, K. Tuzlakoglu, R.L. Reis, N. Hasirci, V. Hasirci, Incorporation of a sequential BMP-2/BMP-7 delivery system into chitosan-based scaffolds for bone tissue engineering, Biomaterials 30 (2009) 3551-3559.
  • [20] L. Richert, A. Schneider, D. Vautier, C. Vodouhe, N. Jessel, E. Payan, P. Schaaf, J.C. Voegel, C. Picart, Imaging cell interactions with native and crosslinked polyelectrolyte multilayers, Cell Biochemistry and Biophysics 44 (2006) 273–285.
  • [21] L. Richert, A.J. Engler, D.E. Discher, C. Picart, Elasticity of native and cross-linked polyelectrolyte multilayer films, Biomacromolecules 5 (2004) 1908–1916.
  • [22] A.J. Engler, L. Richert, J.Y. Wong, C. Picart, D.E. Discher, Surface probe measurements of the elasticity of sectioned tissue, thin gels, and polyelectrolyte multilayer films: correlations between substrate stiffness and cell adhesion, Surface Science 570 (2004) 142–154.
  • [23] O.V. Semenov, A. Malek, A.G. Bittermann, J. Vörös, A.H. Zisch, Engineered polyelectrolyte multilayer substrates for adhesion, proliferation and differentiation of human mesenchymal stem cells, Tissue Engineering: Part A 15 (2006) 2977–2990.
  • [24] M.J. Wissink, M.J. van Luyn, R. Beernink, F. Dijk, A.A. Poot, G.H. Engbers, T. Beugeling, W.G. van Aken, J. Feijen, Endothelial cell seeding on crosslinked collagen: effects of crosslinking on endothelial cell proliferation and functional parameters, Thrombosis and Haemostasis 84 (2000) 325–331.
  • [25] C.P. Vazquez, T. Boudou, V. Dulong, C. Nicolas, C. Picart, K. Glinel, Variation of polyelectrolyte film stiffness by photo-cross-linking: a new way to control cell adhesion, Langmuir 25 (2009) 3556–3563.
  • [26] A. Schneider, A.L. Bolcato-Bellemin, G. Francius, J. Jedrzejwska, P. Schaaf, J.C. Voegel, B. Frisch, C. Picart, Glycated polyelectrolyte multilayer films: differential adhesion of primary versus tumor cells, Biomacromolecules 7 (2006) 2882–2889.
  • [27] A. Schneider, G. Francius, R. Obeid, P. Schwinté, B. Frisch, P. Schaaf, J.C. Voegel, B. Senger, C. Picart, Polyelectrolyte multilayers with a tunable Young's modulus: in fluence of film stiffness on cell adhesion, Langmuir 22 (2006) 1193–1200.
  • [28] M. Lampin, R. Warocquier-clerout, C. Legris, M. Degrange, M. Sigotluizard, Correlation between substratum roughness and wettability, cell adhesion, and cell migration, Journal of Biomedical Materials Research 36 (1997) 99–108.
  • [29] C. Gao, A. Li, J. Shen, Construction of cell-compatible layer and culture of human umbilical vascular endothelial cells on porous polystyrene membranes, Journal of Applied Polymer Science 81 (2001) 3523–3529.
  • [30] L. Richert, F. Boulmedais, P. Lavalle, J. Mutterer, E. Ferreux, G. Decher, P. Schaaf, J.C. Voegel, C. Picart, Improvement of stability and cell adhesion properties of polyelectrolyte multilayer films by chemical cross-linking, Biomacromolecules 5 (2004) 284–294.
  • [31] C. Boura, P. Menu, E. Payan, C. Picart, J.C. Voegel, S. Muller, J. F. Stoltz, Endothelial cells grown on thin polyelectrolyte mutlilayered films: an evaluation of a new versatile surface modification, Biomaterials 24 (2003) 3521–3530.
  • [32] K. Ren, L. Fourel, C.G. Rouvière, C. Albiges-Rizo, C. Picart, Manipulation of the adhesive behaviour of skeletal muscle cells on soft and stiff polyelectrolyte multilayers, Acta Biomaterials 6 (2010) 4238–4248.
  • [33] O.V. Semenov, A. Malek, A.G. Bittermann, J. Vörös, A.H. Zisch, Engineered polyelectrolyte multilayer substrates for adhesion, proliferation and differentiation of human mesenchymal stem cells, Tissue Engineering. Part A 15 (2009) 2977–2990.
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.