Narzędzia help

Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
first previous next last
cannonical link button

http://yadda.icm.edu.pl:80/baztech/element/bwmeta1.element.baztech-38816209-bd93-4aa8-b651-e6b580a45d7a

Czasopismo

Acta of Bioengineering and Biomechanics

Tytuł artykułu

Biocorrosion of dental alloys due to Desulfotomaculum nigrificans bacteria

Autorzy Mystkowska, J. 
Treść / Zawartość
Warianty tytułu
Języki publikacji EN
Abstrakty
EN Purpose: Degradation processes of metallic biomaterials in the oral cavity limit the stability and reliability of dental materials. The influence of environment bacteria Desulfotomaculum nigrificans sulfate reducing bacteria on the corrosion processes of Co-Cr-Mo and Ti-6Al-4V alloys was assessed. Methods: After 28 and 56 days of contact of the materials with the bacterial environment, the surfaces of the tested biomaterials were observed by means of confocal scanning laser microscopy (CSLM), and their chemical composition was studied using X-Ray Photoelectron Spectrometry (XPS). Results: Corrosive changes and the presence of sulfur (with medium atomic concentration of 0.5% for Co-Cr-Mo and 0.3% for Ti-6AL-4V) were observed on the surface of the biomaterials. Image analysis conducted using APHELION software indicated that corrosion pits took up approx. 2.3% and 1.8% (after 28 days) and 4.2% and 3.1% (after 56 days) of the total tested surfaces of cobalt and titanium alloys respectively. The greatest number of corrosion pits had a surface area within the range of 1-50 m2. They constituted from 37% until 83% of all changes, depending on the type of material. Conclusions: An evident influence of the SRB on the cobalt and titanium alloys surfaces was observed. Significant corrosive losses caused by the activity of micro-organisms were stated on the studied metallic surfaces. The results of this study have much cognitive and utilitarian significance.
Słowa kluczowe
PL biokorozja   bakterie   siarczany   XPS  
EN biocorrosion   sulfate-reducing bacteria   Desulfotomaculum nigrificans   XPS   Aphelion  
Wydawca Oficyna Wydawnicza Politechniki Wrocławskiej
Czasopismo Acta of Bioengineering and Biomechanics
Rocznik 2016
Tom Vol. 18, nr 4
Strony 87--96
Opis fizyczny Bibliogr. 28 poz., rys., wykr.
Twórcy
autor Mystkowska, J.
  • Department of Materials Science and Biomedical Engineering, Faculty of Mechanical Engineering, Bialystok University of Technology, Bialystok, j.mystkowska@pb.edu.pl
Bibliografia
[1] ALMAGUER-FLORES A., Biofilms in the oral environment, Bio-Tribocorrosion in Biomaterials and Medical Implants, Woodhead Publishing Series in Biomaterials, 2013, 169-186.
[2] BASKARAN V., NEMATI M., Anaerobic reduction of sulfate in immobilized cell bioreactors, using a microbial culture originated from an oil reservoir, Biochem. Eng. J., 2006, 31(2), 148-159.
[3] BEECH I.B., SUNNER J.A., HIRAOKE K., Biocorrosion: towards understanding interactions between biofilms and metals, Curr. Opin. Biotech., 2004, 15, 181-186.
[4] BRYANT R.D., LAISHLEY E.J., The role of hydrogenase in anaerobic biocorrosion, Can. J. Microbiol., 1990, 36, 259-264.
[5] CHEN G., CLAYTON C.R., Influence of sulfate-reducing bacteria on the passivity of type 304 austenitic stainless steel, J. Electrochem. Soc., 1997, 144(9), 3140-3146.
[6] DODDS M.W.J., JOHNSON D.A., YEH C.-K., Health benefits of saliva: a review, J. Dent., 2005, 33, 223-233.
[7] DONNELLY L.S., BUSTA F.F., Heat resistance of Desulfotomaculum nigrificans spores in soy protein infant formula preparations, Appl. Environ. Microbiol., 1980, 40(4), 721–725.
[8] DZIERŻEWICZ Z., CWALINA B., GAWLIK B., WILCZOK T., Isolation and evaluation of susceptibility of sulphasalazine of Desufovibrio desulfuricans strains from the human digestive tract, Pol. J. Microbiol., 1997, 46, 175-187.
[9] GUO W.Y., SUN J., WU J.S., Electrochemical and XPS studies of corrosion behavior of Ti–23Nb–0.7Ta–2Zr–O alloy in Ringer's solution, Mater. Chem. Phys., 2009, 113(2-3), 816–820.
[10] HSU R. W.-W., YANG CH.-H., HUANG CH.-A., CHEN Y.-S., Electrochemical corrosion studies on CoCrMo implant alloy in biological solutions,Mater. Chem. Phys., 2005, 93, 531-538.
[11] KAMEDA T., ODA H., OKHUMA K., SANO N., BATBAYAR N., TARASHIMA Y., SATO S., TERADA K., Microbiologically influenced corrosion of orthodontic metallic appliances, Dent. Mater. J., 2014, 33(2), 187-195.
[12] KUPHASUK C.H., OSHIDA Y., ANDRES C.J., HOVIJITRA S.T., BARCO M.T., BROWN D.T., Electrochemical corrosion of titanium and titanium-based alloys, J. Prosthet. Dent., 2001, 85, 195-202.
[13] KURTZ W., RACKI J., Korozja mikrobiologiczna oraz rola bakterii w przemyśle kopalin chemicznych, Wiadomości botaniczne, 1964, t. VIII, z. 2., 163-169 (in Polish).
[14] LATA S., SHARMA C.H., SINGH A.K., Comparison of Biocorrosion due to Desulfovibrio desulfuricans and Desulfotomaculum nigrificans Bacteria, J. Mater. Eng. Perform., 2013, 22, 463–469.
[15] LATA S., SHARMA C.H., SINGH A.K., Effect of host media on microbial influenced corrosion due to Desulfotomaculum nigrificans, J. Mater. Eng. Perform., 2013, 22, 1120-1128.
[16] LIU Y., WANG Q., SONG Y., ZHANG D., YU S., ZHU X., A study on the corrosion behavior of Ce-modified cast AZ91 magnesium alloy in the presence of sulfate-reducing bacteria, J. Alloy Compd., 2009, 473, 550–556.
[17] LOPES F.A., MORIN P., OLIVEIRA R., MELO L.F., Interaction of Desulfovibrio desulfuricans biofilms with stainlees steel surface and its impact on bacterial metabolism, J. Appl. Microbiol., 2006, 101, 1087-1095.
[18] MARSH P.D., HEAD D.A., DEVINE D.A., Dental plaque as a biofilm and a microbial community-Implications for treatment, J. Oral Biosci., 2015, http://dx.doi.org/10.1016/j.job.2015.08.002.
[19] MYSTKOWSKA J., FERREIRA J.A., LESZCZYŃSKA K., CHMIELEWSKA S., DĄBROWSKI J.R., WIECIŃSKI P., KURZYDŁOWSKI K.J., Biocorrosion of 316LV steel used in oral cavity due to Desulfotomaculum nigrificans bacteria, J. Biomed. Mater. Res. B, 2015, DOI: 10.1002/jbm.b.33518.
[20] NAZINA T.N., ROZANOVA E.P., BELYAKOVA E.V., LYSENKO A.M., POLTARAUS A.B., TOUROVA T.P., OSIPOV G.A., BELYAEV S.S., Description of “Desulfotomaculum nigrificans subsp. salinus” as a New Species, Desulfotomaculum salinum sp. nov, Microbiol., 2005, 74(5), 567–574.
[21]OSHIDA Y., SACHDEVA R.C., MIYAZAKI S., Microanalytical characterization and surface modification of TiNi orthodontic archwires, Biomed. Mater Eng., 1992, 2, 51-69.
[22] SONGUR M., CELIKKAN H., GOKMESE F., SIMSEK S.A., ALTUN N.S., AKSU M.L., Electrochemical corrosion properties of metal alloys used in orthopaedic implants, J. Appl. Electrochem., 2009, 39, 1259-
[23] SOUZA J.C.M., PONTHIAUX P., HENRIQUES M., OLIVEIRA R., TEUGHELS W., CELIS J.-P., ROCHA L.A., Corrosion behavior of titanium in the presence of Streptococcus mutans, J. Dent., 2013, 41, 528-534.
[24] WANG J.J., SANDERSON B.J.S., WANG H., Cyto- and genotoxicity of ultrafine TiO2 particles in cultures human lymphoblastoid cells, Mutation Research, 2007, 628, 99-106.
[25] WILSON M., KPENDEMA H., NOAR J.H., HUNT N., MORDAN N.J., Corrosion of intra-oral magnets in the presence and absence of biofilms of Streptococcus sanguis, Biomaterials, 1995, 16, 721-725.
[26] XU LI.-CH., CHAN K.-Y., FANG H.H.P., Application of atomic force microscopy in the study of microbiologically influenced corrosion, Mater. Charact., 2002, 48, 195– 203.
[27] YAN Y., NEVILLE A., DOWSON D., Biotribocorrosion of CoCrMo orthopaedic implant materials-Assessing the formation and effect of the biofilm, Tribol. Int., 2007, 40, 1492-1499.
[28] ZUO R., Biofilms: strategies for metal corrosion inhibition employing microorganisms, Appl. Microbiol. Biotechnol., 2007, 76, 1245-1253.
Kolekcja BazTech
Identyfikator YADDA bwmeta1.element.baztech-38816209-bd93-4aa8-b651-e6b580a45d7a
Identyfikatory
DOI 10.5277/ABB-00499-2015-03