Narzędzia help

Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
first previous next last
cannonical link button


ECONTECHMOD : An International Quarterly Journal on Economics of Technology and Modelling Processes

Tytuł artykułu

The impact of heat treatment on the components of plant biomass as exemplified by Junniperus sabina and Picea abies

Autorzy Drygaś, B.  Depciuch, J.  Puchalski, Cz.  Zaguła, G. 
Treść / Zawartość
Warianty tytułu
Języki publikacji EN
EN Torrefaction is the process of drying biomass at high temperatures in order to transform it into biofuels with properties and composition resembling carbon. The impact of high temperature breaks the chains of hemicellulose, lignin and cellulose and degrades the biomass to simpler organic compounds. The aim of this publication was to specify the impact of the duration of the heat treatment on the stability of biomass structures such as lignocellulose illustrated with examples of selected species of conifers. The research material consisted of shoot tips of Junniperus sabina and Picea abies. The material used in the process was air-dried, dried at 150oC and torrefied at temperatures of 200, 250 and 300oC in a LECO camera – TGA 701 apparatus for 30 minutes. Fresh needles and their torrefied products were measured spectroscopically using FTIR Vertex 70v made by Bruker. Microscopic photographs of samples were taken in the scales 10 μm, 20 μm, and 50 μm using the TESCAN VEGA3 scanning electron microscope. The unprocessed plant material did not differ significantly from one another – the FTIR spectra of both plants exhibited the same functional groups. The biomass heat treatment led to significant changes in its chemical composition and topographic changes in the obtained biochars.
Słowa kluczowe
EN torrefaction   biomass   FTIR spectra   changes   biochars  
Wydawca Polish Academy of Sciences, Branch in Lublin
Czasopismo ECONTECHMOD : An International Quarterly Journal on Economics of Technology and Modelling Processes
Rocznik 2016
Tom Vol. 5, No 3
Strony 41--50
Opis fizyczny Bibliogr. 29 poz., rys.
autor Drygaś, B.
  • Department of Bioenergy Technology, Faculty of Biology and Agriculture, University of Rzeszów, Zelwerowicza 4, 35-601 Rzeszów,
autor Depciuch, J.
  • Faculty of Biology and Agriculture, Ćwiklińskiej 1, 35-601 Rzeszów
autor Puchalski, Cz.
  • Department of Bioenergy Technology, Faculty of Biology and Agriculture, University of Rzeszów, Zelwerowicza 4, 35-601 Rzeszów
autor Zaguła, G.
  • Department of Bioenergy Technology, Faculty of Biology and Agriculture, University of Rzeszów, Zelwerowicza 4, 35-601 Rzeszów
1. Acharya B., Pradchan R. R., Dutta A., 2015. Qualitative and kinetic analysis of torrefaction of lignocellulosic biomass using DSC-TGA-FTIR.AIMS. Energy, 3, 4, 760-773.
2. Bajcar M., Zaguła G., Saletnik B., Puchalski Cz., 2015. Influence of temperature during torrefaction process on the quality of torrefied products obtained from rapeseed straw and common osier. Teka Commission of Motorization and Energetics in Agriculture, 15, 4, 7-12.
3. Bajcar M., Zaguła G., Saletnik B., Puchalski Cz., Czernicka M., Zapałowska A., Zardzewiały M., Rybka S. 2015. The influence of torrefecation process on the biomass plant energy properties. Productivity and health of the environment, ed. Puchalski Cz., Kaniuczak J., Gajdek G., 89-99. (in Polish)
4. Bergman P. C. A., Kiel J. H. A. 2005. Torrefaction for biomass upgrading. ECN publication, Report ECN-RX-05-180.
5. Binti Saleh S., Hansen B. B., Jensen P. A., Dam-Johansen K., 2013. Influence of Biomass Chemical Properties on Torrefaction Characteristics. Energy Fuels, 12, 7541-7548.
6. Czernik S., Bridgwater A. V., 2004. Overview of applications of biomass fast pyrolysis oil. Energy Fuels, 18, 590-598.
7. Hamelinck C. N., Hooijdonk G., Faaij A., 2005. Ethanol from lignocellulosic biomass: techno- economic performance in short-, middle- and long-term. Biomass and Bioenergy, 28, 4, 384-410.
8. Kazakova N., Petkov V., Mihailov E., 2015. Modelling of Biomass Pyrolysis. Journal of Chemical Technology and Metallurgy 50, 3, 278-281.
9. Kristensen J.B., Borjesson J., Bruun M.H., Tjerneld F., Jørgensen H., 2007. Use of surface active additives in enzymatic hydrolysis of wheat straw lignocellulose. Enzyme and Microbial Technology 40, 888-895.
10. Lalak J., Kasprzyka A., Murat A., Paprota E. M., Tys J., 2014. Pretreatment methods of lignocelulosic biomass to improve methane fermentation process (a review). Acta Agrophysica, 21, 1, 51-62. (in Polish)
11. Lê Thành K., Commandré J-M., Valette J., Volle G., Meyer M., 2015. Detailed identification and quantification of the condensable species released during torrefaction of lignocellulosic biomasses. Fuel Processing Technology 139, 226-235.
12. Lewandowski W., Radziemska E., Ryms M., Ostrowski P., 2010. Modern methods of thermochemical biomass conversion into gas, liquid and solid fuels. Proceedings of ECOpole 4, 2, 453-457. (in Polish)
13. Lewandowski W., Ryms M., Meler P., 2010. Termochemical pyrolysis into liquid and gas biofuels as a method of increasing biomass energy conversion efficiency. Nafta-Gaz 8, 675-680. (in Polish)
14. Li M-F., Chen L-X., Li X., Chen Ch-Z., Lai Y-Ch., Xiao X., Wu Y-Y., 2016. Evaluation of the structure and fuel properties of lignocelluloses through carbon dioxide torrefaction. Energy Conversion and Management 119, 463-472.
15. Lv P., Almeida G.,Perré P., 2015. TGA-FTIR Analysis of Torrefaction of Lignocelulosis Components (cellulose, xylan, lignin) in Isothermal Conditions over a Wide Range of Time Durations. Bio-Resources, 10, 3, 4239-4251.
16. Mafu L. D., Neomagus H.W.J.P. Everson R. C., Carrier M., Strydom Ch. A., Bunt J. R., 2016. Structural and chemical modifications of typical South African biomasses during torrefaction. Bioresource Technology, 202, 192-197.
17. Malherbe S., Cloete T. E., 2002. Lignocellulose biodegradation: Fundamentals and applications. Reviews in Environmental Science & Bio-Technology, 1, 105-114.
18. Pach M., Zanzi R., Björnbom E., 2002. Torrefied Biomass a Substitute for Wood and Charcoal (6th Asia-Pacific International Symposium on Combustion and Energy Utilization 20 May 2002 – 22 May 2002, Kuala Lumpur).
19. Park J., Meng J., H. L. Kwang, Rojas O. J., Park S., 2013. Transformation of lignocellulosic biomass during torrefaction. Journal of Analytical and Applied Pyrolysis, 100, 199-206.
20. Peng Y., Wu S., 2010. The structural and thermal characterictics of wheat straw hemicellulose. Journal of Analytical and Applied Pyrolysis, 88, 134-139.
21. Piskorz J., Radlein D., Scott D. S., 1986. On the mechanism of the rapid pyrolysis of cellulose. Journal of Analytical and Applied Pyrolysis, 9, 2, 121-137.
22. PN-EN 14778:2011(U). Solid biofuels – collecting samples. (in Polish)
23. PN-EN 14780:2011(U). Solid biofuels – preparing samples. (in Polish)
24. Pushkin S. A., Kozlova L. V., Makarov A. A., Grachev A. N., Gorshkova T. A., 2015. Cell wall components in torrefied softwood and hardwood samples. Journal of Analytical and Applied Pyrolysis, 116, 102-113.
25. Ratte J., Fardet E., Mateos D., Hery J-S., 2011. Mathematical modeling of a continuous biomass torrefaction reactor: TORSPYD (TM) column. Biomass and Bioenergy, 35, 8, 3481-3495.
26. Riberto de Luz B., 2006. Attenuated total reflectance spectroscopy of plant leaves: a tool for ecological and botanical studies, New Phytologist, 172, 2, 305-318.
27. Sun Y., Cheng J., 2002. Hydrolysis of lignocellulosic material for ethanol production: a review. Bioresource Technology, 83, 1-11.
28. Wilk M., Magdziarz A., Kalemba I., 2015. Characterisation of renewable fuels torrefaction process with different instrumental techniques. Energy, 87, 259-269.
29. Zaldivar J., Nielsen J., Olsson L., 2001. Fuel ethanol production from lignocellulose: a challenge for metabolic engineering and process integration Applying Microbiological Biotechnology, 56, 17-34.
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Kolekcja BazTech
Identyfikator YADDA bwmeta1.element.baztech-384e0797-c4fb-412b-8d2b-5b1b267233d2