PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Stable or not stable? Recognizing surge based on the pressure signal

Treść / Zawartość
Języki publikacji
EN
Abstrakty
EN
The surge protection may be worth millions of dollars. This is typical price of a centrifugal compressor repair combined with additional cost of nonfunctionality of an industry employing it. This threat is normally secured by application of an antisurge systems. Typically they are activated at predefined working conditions when compressor mass flow rate approaches region affected by the surge. As a result those systems are vastly limiting its operational range usually by a desirable region where compressor attains large pressure ratio. Therefore, a modern antisurge systems are aiming at diminishing this tradeoff by reacting to the real pressure signal gathered at high frequency. This paper presents one of those methods employing singular spectrum analysis. This algorithm has not been widely used for this application, while it was shown herein that it may bring clear distinction between stable and nonstable working condition, even at presurge conditions. Hence in further perspective it may bring anti-surge protection quality, that was not met with another methods.
Rocznik
Tom
Strony
55--68
Opis fizyczny
Bibliogr. 22 poz., rys.
Twórcy
autor
  • Mechanical and Aerospace Engineering, University of Strathclyde, 75 Montrose Street Glasgow G1 1XJ, UK
  • Institute of Turbomachinery, Lodz University of Technology, 219/223 Wólczańska, 90-924 Łódź, Poland
Bibliografia
  • [1] Duvia A., Gaia M.: ORC plants for power production from biomasss from 0.4 to 1.5 MWe. Technology, efficiency, practical experiences and economy. In: Proc. 7th Holzenergie Symp., ETH Zürich 2002.
  • [2] Mikielewicz J., Bykuć S., Mikielewicz D.: Application of renewable energy sources to drive ORC mikro CHP. In: Heat Transfer Renewable Sources of Energy (J. Mikielewicz, W. Nowak, A. Stachel, Eds.), 2006.
  • [3] Nowak W., Borsukiewicz-Gozdur A.: ORC power plants as a means of utilisation of energy from low-temperature sources. Czysta Energia 2(2011), 32–35 (in Polish).
  • [4] Mikielewicz J., Mikielewicz D., Ihnatowicz E., Kaczmarczyk T., Wajs J., Matysko R. et al.: Thermodynamic cycles of ORC micro power plants. Wydawnictwo IMP PAN, Gdańsk 2013.
  • [5] Gaia M.: 30 years of organic Rankine cycle development. In: Proc. First Int. Semin. ORC Power Syst., Delft 2011.
  • [6] Baljé O.E.: A study on design criteria and matching of turbomachines: Part A – Similarity relations and design criteria of turbines. J. Eng. Power 84(1962), 1, 83–102, DOI:10.1115/1.3673386.
  • [7] Kang S.H.: Design and experimental study of ORC (organic Rankine cycle) and radial turbine using R245fa working fluid. Energy 41(2012), 1, 514–524.
  • [8] Capata R., Hernandez G.: Preliminary design and simulation of a turbo expander for small rated power organic Rankine cycle (ORC). Energies 7(2014), 11, 7067–7093, DOI:10.3390/en7117067.
  • [9] Klonowicz P., Rusanov R., Rusanov A., Lampart P., Suchocki T., Surwiło J.: Methods for design of radia-axial turbines for ORC cogeneration unit working with MDM. Bull. NTU ‘KhPI’. Ser. Power Heat Eng. Process. Equip. 16(2015), 67–77.
  • [10] Klonowicz P., Surwiło J., Witanowski Ł., Suchocki T.K., Kozanecki Z., Lampart P.: Design and numerical study of turbines operating with MDM asworking fluid. Open Eng. 5(2015), 485–499, DOI:10.1515/eng-2015-0050.
  • [11] Suchocki T., Lampart P., Klonowicz P.: Numerical investigation of a GTM-140 turbojet engine. Zesz. Nauk.Ciepl. Masz. Przepływowe – Turbomach. / Politech. Łódzka. 145(2014), 115–116.
  • [12] Klonowicz P., Borsukiewicz-Gozdur A., Hanausek P., Kryłłowicz W., Brüggemann D.: Design and performance measurements of an organic vapour turbine. Appl. Therm. Eng. 63(2014), 1, 297–303. http://www.sciencedirect.com/science/article/pii/ S1359431113008065 (accessed Jan. 10, 2014).
  • [13] Harinck J., Pasquale D., Pecnik R., Colonna P.: Three-dimensional RANS simulation of a high-speed organic Rankine cycle turbine. In: Proc. First Int. Semin. ORC Power Syst. ORC 2011, Delft 2011.
  • [14] Solvay, Solkatherm§SES36, http://www.solvaychemicals.com/EN/products/Fluor/ SOLKANE_Specialties/SolkathermSES36.aspx.
  • [15] Bell I.H., Wronski J., Quoilin S., Lemort V.: Pure and pseudo-pure fluid thermophysical property evaluation and the open-source thermophysical property library CoolProp. Ind. Eng. Chem. Res. 53(2014), 2498–2508, DOI:10.1021/ie4033999.
  • [16] Craig H.R.M., Cox H.J.A.: Performance estimation of axial flow turbines. In: Proc. Inst. Mech. Eng. 185(1970), 1, 407–424.
  • [17] ANSYS Academic Research, Lelease 16, 2014.
  • [18] Rusanov A.V., Lampart P., Rusanov R.A.: Interpolation-analytical approximation of modified Benedict-Webb-Rubin equation of state for accounting of the real properties of working fluid in 3D calculations. Compress. Energ. Mach. Build. (2014), 18–23.
  • [19] Kicinski J., Zywica G.: The numerical analysis of the steam microturbine rotor supported on foil bearings. Adv. Vib. Eng. 11(2012), 2, 113–119.
  • [20] Zywica G., Drewczynski M., Kicinski J., Rzadkowski R.: Computational modal and strength analysis of the steam microturbine with fluid-film bearings. J. Vib. Eng. Technol. 2(2014), 6, 543–549.
  • [21] Perycz S.: Steam and gas turbines. IMP PAN, Ossolineum, Wrocław 1992 (in Polish).
  • [22] Samojłowicz G., Trojanowski B.: Steam turbines. PWN, Warsaw 1957 (in Polish).
Identyfikator YADDA
bwmeta1.element.baztech-3816784b-b53b-407e-b914-7ad909508430