Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Electromagnetic study of lithospheric structure in the marginal zone of East European Craton in NW Poland

Warianty tytułu
Języki publikacji
The marginal zone of the East European Platform, an area of key importance for our understanding of the geotectonic history of Europe, has been a challenge for geophysicists for many years. The basic research method is seismic survey, but many important data on physical properties and structure of the lithosphere may also be provided by the electromagnetic methods. In this paper, results of deep basement study by electromagnetic methods performed in Poland since the mid-1960s are presented. Over this time, several hundred long-period soundings have been executed providing an assessment of the electric conductivity distribution in the crust and upper mantle. Numerous 1D, 2D, and pseudo-3D electric conductivity models were constructed, and a new interpretation method based on Horizontal Magnetic Tensor analysis has been applied recently. The results show that the contact zone is of lithospheric discontinuity character and there are distinct differences in geoelectric structures between the Precambrian Platform, transitional zone (TESZ), and the Paleozoic Platform. The wide-spread conducting complexes in the crust with integral conductivity values reaching 10 000 S at 20–30 km depths are most spectacular. They are most likely consequences of geological processes related to Caledonian and Variscan orogenesis. The upper mantle conductivity is also variable, the thickness of high-resistive lithospheric plates ranging from 120–140 km under the Paleozoic Platform to 220–240 km under the East European Platform.
Opis fizyczny
Bibliogr. 68 poz.
  • Institute of Geophysics, Polish Academy of Sciences, Warszawa, Poland
  • 1. Artemieva, I.M., and W.D. Mooney (2001), Thermal thickness and evolution of Precambrian lithosphere: A global study, J. Geophys. Res. 106,B8, 16387-16414, DOI: 10.1029/2000JB900439.
  • 2. Artemieva, I.M., H. Thybo, and M.K. Kaban (2006), Deep Europe today: geophysical synthesis of the upper mantle structure and lithospheric processes over 3.5 Ga, Geol. Soc. Mem. 32, 11-41, DOI: 10.1144/GSL.MEM.2006.032.01.02.
  • 3. Bailey, E.B. (1928), The Palaeozoic mountain systems of Europe and America, Nature 122,3082, 811-814, DOI: 10.1038/122811a0.
  • 4. Becken, M., and L.B. Pedersen (2003), Transformation of VLF anomaly maps into apparent resistivity and phase, Geophysics 68,2, 497-505, DOI: 10.1190/1.1567217.
  • 5. Berdichevsky, M.N., and V.I. Dmitriev (2008), Models and Methods of Magnetotellurics, Springer Verlag, Berlin Heidelberg.
  • 6. Berthelsen, A. (1998), The Tornquist zone northwest of the Carpathians: An intraplate pseudosuture, Geol. Foren. Förh. 120,2, 223-230.
  • 7. Cagniard, L. (1953), Basic theory of the magneto-telluric method of geophysical prospecting, Geophysics 18,3, 605-635, DOI: 10.1190/1.1437915.
  • 8. Carte Tectonicque Internationale de l’Europe 1:2 500 000 (1962), Congres Geologique International, Commision de la Carte Geologique du Monde, Sous-Commission de la Carte Tectonique du Monde, Moscou.
  • 9. Czerwiński, T., and M. Stefaniuk (2001), Recognition of geological structure of the Carpathians as a result of magnetotelluric investigations, Slovak Geol. Mag. 7,2, 139-144.
  • 10. Dadlez, R. (2006), The Polish Basin - relationship between the crystalline, consolidated and sedimentary crust, Geol. Q. 50,1, 43-58.
  • 11. Dadlez, R., Z. Kowalczewski, and J. Znosko (1994), Some key problems of the pre-Permian tectonics of Poland, Geol. Q. 38, 169-189.
  • 12. Dadlez, R., M. Grad, and A. Guterch (2005), Crustal structure below the Polish Basin: Is it composed of proximal terranes derived from Baltica?, Tectonophysics 411,1-4, 111-128, DOI: 10.1016/j.tecto.2005.09.004.
  • 13. Du, Z.J., A. Michelini, and G.F. Panza (1998), EurID: a regionalized 3-D seismological model of Europe, Phys. Earth Planet. In. 106,1-2, 31-62, DOI: 10.1016/S0031-9201(97)00107-6.
  • 14. Ernst, T., H. Brasse, V. Cerv, N. Hoffmann, J. Jankowski, W. Jóźwiak, A. Kreutzmann, A. Neska, N. Palshin, L.B. Pedersen, M. Smirnov, E. Sokolova, and I.M. Varentsov (2008), Electromagnetic images of the deep structure of the Trans-European Suture Zone beneath Polish Pomerania, Geophys. Res. Lett. 35, 15, DOI: 10.1029/2008GL034610.
  • 15. Golonka, J., K. Pietsch, P. Marzec, M. Stefaniuk, A. Waśkowska, and M. Cieszkowski (2009), Tectonics of the western part of the Polish Outer Carpathians, Geodin. Acta 22,1-3, 127-143, DOI: 10.3166/ga.22.127-143.
  • 16. Grad, M., G.R. Keller, H. Thybo, A. Guterch, and POLONAISE Working Group 1, (2002), Lower lithospheric structure beneath the Trans-European Suture Zone from POLONAISE’97 seismic profiles, Tectonophysics 360,1-4, 153-168, DOI: 10.1016/S0040-1951(02)00350-5.
  • 17. Guterch, A., and M. Grad (2006), Lithospheric structure of the TESZ in Poland based on modern seismic experiments, Geol. Q. 50,1, 23-32.
  • 18. Guterch, A., M. Grad, R. Materzok, and E. Perchuć (1986), Deep structure of the Earth’s crust in the contact zone of the Palaeozoic and Precambrian platforms in Poland (Tornquist-Teisseyre zone), Tectonophysics 128,3-4, 251-279, DOI: 10.1016/0040-1951(86)90296-9.
  • 19. Guterch, A., M. Grad, T. Janik, R. Materzok, U. Luosto, J. Yliniemi, E. Lück, A. Schulze, and K. Förste (1994), Crustal structure of the transition zone between Precambrian and Variscan Europe from new seismic data along LT-7 profile (NW Poland and eastern Germany), C. R. Acad. Sci. Paris II, 319,12, 1489-1496.
  • 20. Hoffmann, N., L. Hengesbach, B. Friedrichs, and H.J. Brink (2008), The contribution of magnetotellurics to an improved understanding of the geological evolution of the North German Basin - review and new results, Z. Dtsch. Ges. Geowiss. 159,4, 591-606, DOI: 10.1127/1860-1804/2008/0159-0591.
  • 21. Janik, T., J. Yliniemi, M. Grad, H. Thybo, T. Tiira, and POLONAISE P2 Working Group 1 (2002), Crustal structure across the TESZ along POLONAISE’97 seismic profile P2 in NW Poland, Tectonophysics 360,1-4, 129-152, DOI: 10.1016/S0040-1951(02)00353-0.
  • 22. Jankowski, J. (1967), The marginal structure of the east European platform in Poland on the basis of data on geomagnetic field variations, Publs. Inst. Geophys. Pol. Acad. Sci. 14, 93-102.
  • 23. Jankowski, J. (1972), Techniques and results of magnetotelluric and geomagnetic deep soundings, Publs Inst. Geophys. Pol. Acad. Sci. 54, 135 pp.
  • 24. Jankowski, J., Z. Tarłowski, O. Praus, J. Pěčová, and V. Petr (1985), The results of deep geomagnetic soundings in the West Carpathians, Geophys. J. Int. 80,3, 561-574, DOI: 10.1111/j.1365-246X.1985.tb05111.x.
  • 25. Jankowski, J., J. Pawliszyn, W. Jóźwiak, and T. Ernst (1991), Synthesis of electric conductivity surveys performed on the Polish part of the Carpathians with geomagnetic and magnetotelluric sounding methods, Publs. Inst. Geophys. Pol. Acad. Sc. A-19,236, 183-214.
  • 26. Jankowski, J., T. Ernst, W. Jóźwiak, and J. Pawliszyn (1995), Results of induction study within the Pomeranian segment of the Teisseyre-Tornquist tectonic zone, Acta Geophys. Pol. 43,2, 129-136.
  • 27. Jankowski, J., T. Ernst, and W. Jóźwiak (2004), Effect of thin near-surface layer on the geomagnetic induction arrows: An example from the East European Platform, Acta Geophys. Pol. 52,3, 349-361.
  • 28. Jóźwiak, W. (2001), Stochastic inversion method for modeling the electrical conductivity distribution within the Earth’s mantle, Publs. Inst. Geophys. Pol. Acad. Sc. C-78,327, 75 pp.
  • 29. Jozwiak, W. (2012), Large-scale crustal conductivity pattern in Central Europe and its correlation to deep tectonic structures, Pure Appl. Geophys. 169,10, 1737-1747, DOI: 10.1007/s00024-011-0435-7.
  • 30. Jozwiak, W., S. Kovacikova, K. Nowożyński, and I.M. Varentsov (2009), Comparison of techniques to extract geomagnetic field components from array of induction arrows using spline hilbert transform. In: L. Szarka (ed.), Proc. IAGA 11th Scientific Assembly, Sopron 2009.
  • 31. Keller, G.R., and R.D. Hatcher Jr. (1999), Some comparisons of the structure and evolution of the southern Appalachian-Ouachita orogen and portions of the Trans-European Suture Zone region, Tectonophysics 314,1-3, 43-68, DOI: 10.1016/S0040-1951(99)00236-X.
  • 32. Lamarche, J., and M. Scheck-Wenderoth (2005), 3D structural model of the Polish Basin, Tectonophysics 397,1-2, 73-91, DOI: 10.1016/j.tecto.2004.10.013.
  • 33. Lewandowski, M. (2003), Assembly of Pangea: Combined paleomagnetic and paleoclimatic approach, Adv. Geophys. 46, 199-236, DOI: 10.1016/S0065-2687(03)46003-2.
  • 34. Majorowicz, J.A. (2004), Thermal lithosphere across the Trans-European Suture Zone in Poland, Geol. Q. 48,1, 1-14.
  • 35. Narkiewicz M., and R. Dadlez (2008), Geological regional subdivision of Poland: general guidelines and proposed schemes of sub-Cenozoic and sub-Permian units, Prz. Geol. 56,5, 391-397 (in Polish with English abstract).
  • 36. Nowożyński, K. (2012), Splines in the approximation of geomagnetic fields and their transforms at the Earth’s surface, Geophys. J. Int. 189,3, 1369-1382, DOI: 10.1111/j.365-246X.2012.05458.x.
  • 37. Parkinson, W.D. (1959), Directions of rapid geomagnetic fluctuations, Geophys. J. Int. 2,1, 1-14, DOI: 10.1111/j.1365-246X.1959.tb05776.x.
  • 38. Pawliszyn, J., and J. Jankowski (1973), The results of preliminary treatment of magnetotelluric investigations on the VII international profile, Mater. Pr. Inst. Geof. PAN 60.
  • 39. Pharaoh, T.C. (1999), Palaeozoic terranes and their lithospheric boundaries within the Trans-European Suture Zone (TESZ): A review, Tectonophysics 314,1-3, 17-41, DOI: 10.1016/S0040-1951(99)00235-8.
  • 40. Pożaryski, W., and P. Karnkowski (1992), Tectonic Map of Poland during the Variscan Time, Wyd. Geol., Warszawa.
  • 41. Pożaryski, W., Z. Małkowski, and J. Jankowski (1965), Distribution of short-period geomagnetic variations related to tectonics in Central Europe, Ann. Soc. Geol. Pologne 35, 97-102.
  • 42. Schäfer, A., L. Houpt, H. Brasse, N. Hoffmann, and EMTESZ Working Group (2011), The North German Conductivity Anomaly revisited, Geophys. J. Int. 187,1, 85-98, DOI: 10.1111/j.1365-246X.2011.05145.x.
  • 43. Schmucker, U. (1970), Anomalies of Geomagnetic Variations in the Southwestern United States, University of California Press, Berkeley, 165 pp.
  • 44. Semenov, V.Yu., and W. Jóźwiak (2005), Estimation of the upper mantle electric conductance at the Polish margin of the East European Platform, Izv. - Phys. Solid Earth 41,4, 326-332.
  • 45. Semenov, V.Yu, and W. Jóźwiak (2006), Lateral variations of the mid-mantle conductance beneath Europe, Tectonophysics 416,1-4, 279-288, DOI: 10.1016/j.tecto.2005.11.017.
  • 46. Semenov, V.Yu., J. Jankowski, and W. Jóźwiak (2002), New evidence of the anomalously conductive mantle beneath the Tornquist-Teisseyre zone in Poland, Acta Geophys. Pol. 50,4, 517-526.
  • 47. Semenov, V.Yu., W. Jóźwiak, and J. Pek (2003), Deep electromagnetic soundings conducted in Trans-European Suture Zone, Eos Trans. Am. Geophys. Union, 84,52, 581-584, DOI: 10.1029/2003EO520001.
  • 48. Semenov, V.Yu., J. Pek, A. Ádám, W. Jóźwiak, B. Ladanyvskyy, I.M. Logvinov, P. Pushkarev, J. Vozar, and Experimental Team of CEMES Project (2008), Electrical structure of the upper mantle beneath Central Europe: Results of the CEMES Project, Acta Geophys. 56,4, 957-981, DOI: 10.2478/s11600-008-0058-2.
  • 49. Semenov, V.Yu., B. Ladanivskyy, and K. Nowożyński (2011), New induction sounding tested in Central Europe, Acta Geophys. 59,5, 815-832, DOI: 10.2478/s11600-011-0030-4.
  • 50. Stefaniuk, M. (2002), Basic structures of the Carpathian basement as a result of magnetotelluric sounding interpretation. In: Geologica Carpathica, Vol. 53, Proc. 17th Congress of Carpathian-Balkan Geological Association, 1-4 September 2002, Bratislava, Slovakia.
  • 51. Stefaniuk, M. (2009), Recognition of crustal structures of Mid-Polish through based on regional magnetotelluric profiles, In: L. Szarka (ed.), Proc. IAGA 11th Scientific Assembly, Sopron 2009.
  • 52. Stefaniuk, M., J. Pokorski, and M. Wojdyla (2008), Regional magnetotelluric profile through structures of Polish Lowland. In: Proc. 19th Int. Workshop on Electromagnetic Induction in the Earth, 23-29 October 2008, Beijing, China, Vol. 1, China Earthquake Administration, Institute of Geology, Chinese Geophysical Society, Geo-Electromagnetic Committee.
  • 53. Stille, H. (1924), Grundfragen der vergleichenden Tektonik, Borntrager, Berlin, 443 pp.
  • 54. Tait, J. (1999), New Early Devonian paleomagnetic data from NW France: Paleogeography and implications for the Armorican microplate hypothesis, J. Geophys. Res. 104,B2, 2831-2839, DOI: 10.1029/98JB02787.
  • 55. Teisseyre, W. (1893), La surface de sommets du Paleozoique de Podolie Galicienne, Kosmos - J. Soc. Polon. Natural, „Kopernik“, Vol. 8-9, Lwów.
  • 56. Teisseyre, W. (1903), Der Paleozoische Horst von Podolien und die ihn umgehenden Senkugsfelder, Beiträge zur Paleontologic und Geologie Österreichs-Ungarn und d. Orients, Vol. 15, Vienna.
  • 57. Tikhonov, A.N. (1950), On investigation of electrical characteristics of deep strata of Earth’s crust, Dokl. Akad. Nauk SSSR 73, 295-297.
  • 58. Tornquist, A. (1908), Die Feststellung des Südwestrandes des baltisch-russischen Schieldes und die geotektonische Zugehörigkeit der ost-preussischen Scholle, Schr. Phys.-Ökonomisch. Gesellsch. 49,1, 1-12.
  • 59. Unsworth M. (2010), Magnetotelluric studies of active continent-continent collisions, Surv. Geophys. 31,2, 137-161, DOI: 10.1007/s10712-009-9086-y.
  • 60. Vanyan, L.L., I.M. Varentsov, N.G. Golubev, and E.Yu. Sokolova (1997), Construction of magnetotelluric induction curves from a profile of geomagnetic data on electrical conductivity of the continental asthenosphere in the EMSLAB experiment, Izv. - Phys. Sol. Earth 33,10, 807-819.
  • 61. Vanyan, L.L., I.M. Varentsov, N.G. Golubev, and E.Yu. Sokolova (1998), Derivation of simultaneous geomagnetic field components from tipper arrays, Izv. - Phys. Sol. Earth 34,9, 779-786.
  • 62. Varentsov, I.M. (2006), Arrays of simultaneous electromagnetic soundings: Design, data processing and analysis. In: V.V. Spichak (ed.), Methods in Geochemistry and Geophysics, Vol. 40, Elsevier, Amsterdam, 259-273, DOI: 10.1016/S0076-6895(06)40010-X.
  • 63. Varentsov, I.M., and EMTESZ-Pomerania Working Group (2005), Method of horizontal magnetovariational sounding: Techniques and application in the EMTESZ-Pomerania Project. In: O. Ritter and H. Brasse (eds.), Protokoll uber das 21. Kolloquium „Elektromagnetische Tiefenforschung“, 111-123, Dtsch. Geophys. Ges., Potsdam, Germany.
  • 64. Weaver, J.T. (1964), On the separation of local geomagnetic fields into external and internal parts, Z. Geophys. 30, 29-36.
  • 65. Weckmann, U., O. Ritter, and V. Haak (2003), A magnetotelluric study of the Damara Belt in Namibia: 2. MT phases over 90° reveal the internal structure of the Waterberg Fault/Omaruru Lineament, Phys. Earth Planet. In. 138,2, 91-112, DOI: 10.1016/S0031-9201(03)00079-7.
  • 66. Wiese, H. (1962), Geomagnetische Tiefentellurik Teil II: Die Streichrichtung der untergrundstrukturen des elektrischen Widerstandes, erschlossen aus geomagnetischen Variationen, Pure Appl. Geophys. 52,1, 83-103, DOI: 10.1007/BF01996002.
  • 67. Wilde-Piórko, M., M. Świeczak, M. Grad, and M. Majdański (2010), Integrated seismic model of the crust and upper mantle of the Trans-European Suture zone between the Precambrian craton and Phanerozoic terranes in Central Europe, Tectonophysics 481,1-4, 108-115, DOI: 10.1016/j.tecto.2009.05.002.
  • 68. Zielhuis, A., and G. Nolet (1994), Deep seismic expression of an ancient plate boundary in Europe, Science 265,5168, 79-81, DOI: 10.1126/science.265.5168.79.
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.