PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Monitoring heat losses using Landsat ETM+ thermal infrared data - a case study at Kuju fumarolic area in Japan

Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
To monitor heat losses using Landsat 7 thermal infrared data from 2002 to 2010 within the active fumarolic region of Kuju volcano in Japan, we used the Stefan-Boltzmann equation for radiative heat flux (RHF) estimation. Heat discharge rate (HDR) was calculated by using the relationship coefficient of RHF and HDR, obtained from two previous studies. The highest total RHF was found to be about 57.7 MW in 2002 and the lowest was about 21.1 MW in 2010. We found the highest HDR, of about 384.5 MW, in 2002 and the lowest, of about 140.8 MW, in 2010. The RHF anomalous areas were showing a declining trend during our study period. The relationship between the land surface temperature (LST) above ambient and RHF was, as expected, in a strong correlation for each result during our study period. Overall, our study was able to delineate the declining trend of heat losses that supports a previous study of similar declining trend of HDR using steam maximum diameter method from the active fumarolic region of Kuju volcano.
Czasopismo
Rocznik
Strony
1262--1278
Opis fizyczny
Bibliogr. 24 poz.
Twórcy
autor
  • Department of Earth Resources Engineering, Graduate School of Engineering, Kyushu University, Fukuoka, Japan; Department of Geology, Faculty of Earth and Environmental Science, University of Dhaka, Dhaka, Bangladesh
autor
  • Department of Earth Resources Engineering, Faculty of Engineering, Kyushu University, Fukuoka, Japan
Bibliografia
  • 1. Bromley, C.J., S.M. Van Manen, and W. Mannington (2011), Heat flux from steaming ground: reducing uncertainties. In: Proc. 36th Workshop on Geothermal Reservoir Engineering, 31 January–2 February 2011, Stanford University, Stanford, USA, SGP-TR-191.
  • 2. Ehara, S. (1992), Thermal structure beneath Kuju volcano, central Kyushu, Japan, J. Volcanol. Geoth. Res. 54,1–2, 107–115, DOI: 10.1016/0377-0273(92)90117-V.
  • 3. Ehara, S., Y. Fujimitsu, J. Nishijima, A. Ono, and Y. Nakano (2000), Heat and mass transfer processes after 1995 phreatic eruption of Kuju volcano, central Kyushu, Japan. In: Proc. World Geothermal Congress 2000, 28 May–10 June 2000, Kyushu-Tohoku, Japan.
  • 4. Ehara, S., Y. Fujimitsu, J. Nishijima, K. Fukuoka, and M. Ozawa (2005), Change in the thermal state in a volcanic geothermal reservoir beneath an active fumarolic field after the 1995 phreatic eruption of Kuju volcano, Japan. In: Proc. World Geothermal Congress 2005, 24–29 April 2005, Antalya, Turkey.
  • 5. Harris, A.J.L., L. Lodato, J. Dehn, and L. Spampinato (2009), Thermal characterization of the Vulcano fumarole field, Bull. Volcanol. 71,4, 441–458, DOI: 10.1007/s00445-008-0236-8.
  • 6. Hatae, K., Ko. Watanabe, Ka. Watanabe, T. Tsutsui, and K. Motomura (1997), Variation in content of vesiculated glasses in volcanic ash erupted from Kuju volcano in 1995–1996, Japan, J. Volcanol. Soc. Japan 42, 345–353 (in Japanese with English abstract).
  • 7. Hochstein, M.P., and C.J. Bromley (2001), Steam cloud characteristics and heat output of fumaroles, Geothermics 30,5, 547–559, DOI: 10.1016/S0375-6505(01)00012-8.
  • 8. Jinnguuji, M., and S. Ehara (1997), Estimation of steam and heat discharge rate from volcanoes using maximum diameter of volcanic steam, J. Volcanol. Soc. Japan 41, 23–29 (in Japanese with English abstract).
  • 9. Kamata, H., and T. Kobayashi (1997), The eruptive rate and history of Kuju volcano in Japan during the past 15,000 years, J. Volcanol. Geoth. Res. 76,1–2, 163–171, DOI: 10.1016/S0377-0273(96)00076-5.
  • 10. Kita, I., T. Kai, R. Itoi, M. Ishida, and A. Ueda (2009), Magmatic fluid input to the Kuju-Iwoyama hydrothermal system prior to the 1995 eruption of the Kuju volcano (Kyushu, Japan), Geothermics 38,3, 294–302, DOI: 10.1016/j.geothermics.2009.04.002.
  • 11. Koga, M., and S. Ehara (2012), Thermal modeling of phreatic eruption processes of Kuju volcano based on the heat discharge rate and fumarolic temperature data, Geothermal and Volcanological Research Report of Kyushu University, 20, 142–152.
  • 12. Mia, M.B., and Y. Fujimitsu (2011), Study on satellite images based spectral emissivity, land surface temperature and land-cover in and around Kuju volcano, Central Kyushu, Japan, J. Adv. Sci. Eng. Res. 1,2, 177–191.
  • 13. Mia, M.B., and Y. Fujimitsu (2012), Mapping hydrothermal altered mineral deposits using Landsat 7 ETM+ image in and around Kuju volcano, Kyushu, Japan, J. Earth Syst. Sci. 121,4, 1049–1057, DOI: 10.1007/ s12040-012-0211-9.
  • 14. Mia, M.B., C.J. Bromley, and Y. Fujimitsu (2012a), Monitoring heat flux using satellite based imagery at Karapiti (“Craters of the Moon”) fumaroles area, Taupo, New Zealand. In: Proc. 37th Workshop on Geothermal Reservoir Engineering, Stanford University, Stanford, USA, SGP-TR-194.
  • 15. Mia, M.B., C.J. Bromley, and Y. Fujimitsu (2012b), Monitoring heat flux using Landsat TM/ETM+ thermal infrared data — A case study at Karapiti (“Craters of the Moon”) thermal area, New Zealand, J. Volcanol. Geoth. Res. 235–236, 1–10, DOI: 10.1016/j.jvolgeores.2012.05.005.
  • 16. Mia, M.B., Y. Fujimitsu, and C.J. Bromely (2012c), Estimation and monitoring heat discharge rates using Landsat ETM+ thermal infrared data: A case study in Unzen geothermal field, Kyushu, Japan. In: Proc. SPIE “Land Surface Remote Sensing”, 29 October 2012, Kyoto, Japan, Vol. 8524, DOI: 10.1117/12.974475.
  • 17. Mizutani, Y., S. Hayashi, and T. Sugiura (1986), Chemical and isotopic compositions of fumarolic gases from Kuju-Iwoyama, Kyushu, Japan, Geochem. J. 20,6, 273–285, DOI: 10.2343/geochemj.20.273.
  • 18. Nakaboh, M., H. Ono, M. Sako, Y. Sudo, T. Hashimoto, and A.W. Hurst (2003), Continuing deflation by fumaroles at Kuju Volcano, Japan, Geophys. Res. Lett. 30,7, 1396, DOI: 10.1029/2002GL016047.
  • 19. NASA (2009), Landsat 7 Science Data Users’ Handbook.
  • 20. Qin, Z., A. Karnieli, and P. Berliner (2001), A mono-window algorithm for retrieving land surface temperature from Landsat TM data and its application to the Israel-Egypt border region, Int. J. Remote Sens. 22,18, 3719–3746, DOI: 10.1080/01431160010006971.
  • 21. Savage, S.L., R.L. Lawrence, S.G. Custer, J.T. Jewett, S.L. Powell, and J.A. Shaw (2010), Review of alternative methods for estimating terrestrial emittance and geothermal heat flux for Yellowstone National Park using Landsat imagery, GISci. Remote Sens. 47,4, 460–479, DOI: 10.2747/1548-1603.47.4.460.
  • 22. Tomiyama, N., K. Koike, and M. Omura (2004), Detection of topographic changes associated with volcanic activities of Mt. Hossho using D-InSAR, Adv. Space Res. 33,3, 279–283, DOI: 10.1016/S0273-1177(03)00483-6.
  • 23. Valor, E., and V. Caselles (1996), Mapping land surface emissivity from NDVI: Application to European, African, and South American areas, Remote Sens. Environ. 57,3, 167–184, DOI: 10.1016/0034-4257(96)00039-9.
  • 24. Yamasaki, T., Y. Matsumoto, and M. Hayashi (1970), The geology and hydrothermal alterations of Otake geothermal area, Kujyo volcano group, Kyushu, Japan, Geothermics 2,1, 197–207, DOI: 10.1016/0375-6505(70)90020-9.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-35bbacfb-e3b3-43c4-8571-5caa0b7c2b39
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.