PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Integrated geophysical survey on the ancient Deák Ferenc Sluice of Hungary

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The west channel of the ancient Deák Ferenc which was constructed in 1875 in Hungary was used for controlling the water amount and the east channel was used for the shipping. In the study, four geophysical nondestructive methods were used to this old channel which needs the restoration and reinforcement works. The high-frequency seismic and acoustic measurements were carried out, the resistivity measurements were carried out to map the resistivity distribution of the slab, the seismic direct wave method was used to map the seismic velocities for understanding the stability conditions of the walls and the ground penetrating radar measurements were carried out on the slab and on the walls. The results of integrated study showed us that voids, faults and cracks were detected and the inhomogeneous construction materials were used in the slab. The obtained results emerged that the usage of nondestructive geophysical methods is essential in all stages of restoration and reinforcement works, especially for the ancient structures.
Czasopismo
Rocznik
Strony
1397--1411
Opis fizyczny
Bibliogr. 18 poz.
Twórcy
autor
  • Department of Geophysical Engineering, Faculty of Engineering, Istanbul University-Cerrahpasa, Avcilar Campus, 34320 Istanbul, Turkey, kanli@istanbul.edu.tr
autor
  • Geological and Geophysical Institute of Hungary, Budapest, P.O. Box 35, 1440, Hungary
autor
  • Geological and Geophysical Institute of Hungary, Budapest, P.O. Box 35, 1440, Hungary
autor
  • Geological and Geophysical Institute of Hungary, Budapest, P.O. Box 35, 1440, Hungary
autor
  • Geological and Geophysical Institute of Hungary, Budapest, P.O. Box 35, 1440, Hungary
autor
  • MinGeo Ltd., Budapest, Kassai u. 96, 1142, Hungary
Bibliografia
  • 1. Daily W, Ramirez A (1995) Electrical resistance tomography during in situ trichloroethylene remediation at the Savannah River site. J Appl Geophys 33:239–249
  • 2. Daily W, Ramirez A, LaBrecque D, Nitao J (1992) Electrical resistivity tomography of vadose water movement. Water Resour Res 28:1429–1442
  • 3. Garcia GF, Blanco R, Abad RI, Sala M, Ausina T, Marco B, Conesa MJL (2007) GPR technique as a tool for cultural heritage restoration: San Miguel de los Reyes Hieronymite Monastery, 16th century (Valencia, Spain). J Cult Herit 8:87–92
  • 4. Grit M, Kanli AI (2016) Integrated seismic survey for detecting landslide effects on high speed rail line at Istanbul-Turkey. Open Geosci 8:161–173
  • 5. Günther T (2004) Inversion methods and resolution analysis for the 2D/3D reconstruction of resistivity structures from DC measurements. Ph.D. thesis, University of Mining and Technology Freiberg
  • 6. Kanli AI, Neducza B (2015) Electromagnetic measurements for monitoring molybdenum contamination in near-surface survey. Earth Sci Res J 19:107–111
  • 7. Kanli AI, Taller G, Nagy P, Tildy P, Pronay Z, Toros E (2015) GPR survey for reinforcement of historical heritage construction at fire tower of Sopron. J Appl Geophys 112:79–90
  • 8. Loke MH (2004) Tutorial: 2-D and 3-D electrical imaging surveys. Geotomo Software, Res2dinv 3.5 Software
  • 9. Masini N, Persico R, Rizzo E (2010) Some examples of GPR prospecting for monitoring of the monumental heritage. J Geophys Eng 7:190–199
  • 10. Nyari Z, Kanli AI (2007) Imaging of buried 3D objects by using electrical profiling methods with GPR and 3D geoelectrical measurements. J Geophys Eng 4:83–93
  • 11. Nyari Z, Kanli AI, Stickel J, Tillmann A (2010) The use of non-conventional CPTe data in determination of 3-D electrical resistivity distribution. J Appl Geophys 70:255–265
  • 12. Park S (1998) Fluid migration in the vadose zone from 3-D inversion of resistivity monitoring data. Geophysics 63:41–51
  • 13. Pérez-Gracia V, García F, Pujades LG, González-Drigo R, DiCapua D (2008) GPR survey to study the restoration of a Roman monument. J Cult Herit 9:89–96
  • 14. Pieraccini M, Mecatti D, Luzi G, Seracini M, Pinelli G, Atzeni C (2005) Non-contact intrawall penetrating radar for heritage survey: the search of the ‘Battle of Anghiari’ by Leonardo da Vinci. Nondestruct Test Eval Int 38:151–157
  • 15. Plets RMK, Dix JK, Adams JR, Best AI (2008) 3D reconstruction of a shallow archaeological site from high-resolution acoustic imagery: the Grace Dieu. Appl Acoust 69:399–411
  • 16. Ranalli D, Scozzafava M, Tallini M (2004) Ground penetrating radar investigations for the restoration of historic buildings: the case study of the Collemaggio Basilica (L’Aquila, Italy). J Cult Herit 5:91–99
  • 17. Tildy P, Neducza B, Nagy P, Kanli Aİ, Hegymegi C (2017) Time lapse 3D geoelectric measurements for monitoring of in-situ remediation. J Appl Geophys 136:99–113
  • 18. Törös E (2007) Critical review of the application of seismic-based methods in civil engineering. Ph.D. thesis, University of West Hungary, Sopron
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3572c6b0-22db-4fbf-b130-5bcee57dc943
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.