Narzędzia help

Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
first previous next last
cannonical link button

http://yadda.icm.edu.pl:80/baztech/element/bwmeta1.element.baztech-346f9b17-1215-45dc-b4f8-6383f76e42fb

Czasopismo

Geological Quarterly

Tytuł artykułu

Geochemical and tectonic significance of the Arbat alkali gabbro-monzonite-syenite intrusions, Urumieh–Dokhtar Magmatic Arc, Iran

Autorzy Fazlnia, Abdolnaser 
Treść / Zawartość http://gq.pgi.gov.pl/gq
Warianty tytułu
Języki publikacji EN
Abstrakty
EN The Oligocene Arbat alkali intrusions of the Eastern Miandoab are located in the northwestern part of Iran and belong to the Urumieh-Dokhtar Magmatic Arc (UDMA). The intrusions show a ring structure with gabbro-monzogabbro-monzodiorite (mafic units) on the edges, with monzonite-monzosyenite-syenite (felsic units) gradually going towards the central parts. The textures in different rock types are cumulate, granular and laminated. The high values of (La/Sm)n and (La/Yb)n, contents of K, Rb and Cs (positive anomalies normalized on the basis of the primitive mantle), low concentrations of Hf, Nb, Zr and Ta (negative anomalies), and the changes in Th/Nb, Th/Ta, La/Nb and Ce/Pb ratios along with the geochemical and tectonic setting evi dence exhibit a subduction-modified mantle origin for the formation of these rocks. Accordingly, the intrusions were formed between the Central Iran and the Arabian plates as a result of the partial melting of a mantle wedge at a syn-collision or post-collision arc-related environment. Our data suggested that, after the end of the oblique Neotethys subduction and duri ng/after the continental collision, the break-off or rollback of the Neotethys slab beneath western Iran, in the Oligocene, might have occurred. Such a process led to the change in the geothermal gradient of the mantle wedge because of the subduction fluids, transtension, pressure reduction along the SE-trending lateral depth strike-slip fault zones in the upper part of the mantle wedge, decompression partial melting at the mantle, and the resulting formation of a mafic potassium-rich melt. The mafic magma was injected into crustal magma chambers; probably, the fractional crystaliization and partial contamination occurred with crustal components, forming the intermediate and felsic rocks in the intrusions. Geochemical evidence related to the variations in the ratios of Th/Yb, Ta/Yb, Rb/Y, and Nb/Y and Harker variation diagrams along with the spider diagrams confirmed fractional crystallization and partial FC (fractional crystallization) and AFC (assimilation and fractional crystallization) in the intrusions.
Słowa kluczowe
EN gabbro-monzonite-syenite complex   geochemistry   collisional zone   Neotethys subduction  
Wydawca Państwowy Instytut Geologiczny - Państwowy Instytut Badawczy
Czasopismo Geological Quarterly
Rocznik 2019
Tom Vol. 63, No. 1
Strony 16--29
Opis fizyczny Bibliogr. 90 poz., rys., wykr.
Twórcy
autor Fazlnia, Abdolnaser
Bibliografia
1. Agard, P., Omrani, J., Jolivet, L., Whitechurch, H., Vrielynck, B., Spakman, W., Monié, P., Meyer, B., Wortel, R., 2011. Zagros orogeny: a subduction-dominated process. Mineralogical Magazine, 148: 692-725.
2. Aghazadeh, M., Badrzadeh, Z., 2015. Petrology and petrogenesis of alkatine and calc-alkaline lamprophyres in the Nw Iran. Scientific Quarterly Journal, Geosciences, 24: 87-102.
3. Aghazadeh, M., Castro, A., Rashidnejad Omran, N., Emami, M.H., Moinvaziri, H., Badrzadeh, Z., 2010. The gabbro (shoshonitic)-monzonite-granodiorite association of Khan- kandi pluton, Alborz Mountains, NW Iran. Journal of Asian Earth Sciences, 38: 199-219.
4. Aghazadeh, M., Castro, A., Badrzadeh, Z., Vogt, K., 2011. Post-collisional polycyclic plutonism from the Zagros hinterland. The Shaivar-Dagh plutonic complex Alborz belt, Iran. Geological Magazine, 148: 980-1008.
5. Alaminia, Z., Karimpour, M.H., Homan, S.M., Finger, F., 2013. Geochemistry and geochronology of Upper Cretaceous, magnetite series granitoids, Arghash-GhasemAbad, NE Iran. Petrology, 3: 103-118.
6. Alavi, M., 1994. Tectonic of the Zagros orogenic belt of Iran: new data and interpretations. Tectonophysics, 229: 211-238.
7. Allen, M.B., Kheirkhah, M., Nill, I., Emami, M.H., Mcleod, C., 2013. Generation of arc and within-plate chemical signatures in collision zone magmatism: Quaternary lavas from Kurdistan province, Iran. Journal of Petrology, 54: 887-911.
8. Arculus, R.J., Wills, K.J.A., 1980. The petrology of plutonic blocks and inclusions from the Lesser Antilles island arc. Journal of Petrology, 21: 743-799.
9. Ashrafi, N., Jahangiri, A., Ameri, A., Hasebe, N., Eby, G.N., 2009. Biotite mineral chemistry of the Bozqush and Kaleybar alkaline igneous intrusions, NW Iran. Iranian Society of crystallography and Mineralogy, 17: 381-394.
10. Azizi, H., Asahara, Y., Tsuboi, M., 2014. Quaternary high-Nb basalts: existence of young oceanic crust under the Sanandaj-Sirjan Zone, Nw Iran. International Geology Review, 56: 167-186.
11. Azizi, H., Mohammadi, K., Asahara, Y., Tsuboid, M., Daneshvare, N., Mehrabi, B., 2016. Strongly peraluminous leucogranite (Ebrahim-Attar granite) as evidence for extensional tectonic regime in the Cretaceous, Sanandaj-Sirjan zone, northwest Iran. Chemie der Erde, 76: 529-541.
12. Babazadeh, S., Ghorbani, M.R., Bröcker, M., D'Antonio, M., Cottle, J., Gebbing, T., Carmine Mazzeo, F., Ahmadi, P., 2017. Late Oligocene-Miocene mantle upwelling and ineraction inferred from mantle signatures in gabbroic to granitic rocks from the Urumieh-Dokhtar arc, south Ardestan, Iran. International Geology Review, 59: 1590-1608.
13. Bacon, C.R., Sisson, T.W., Mazdab, F.K., 2007. Young cumuiate complex beneath Veniaminof caldera, Aleutian arc, dated by zircon in erupted plutonic blocks. Geology, 35: 491-494.
14. Bailey, J.C., Sorensen, H., Andersen, T., Kogarko, L.N., Rose-Hansen, J., 2006. On the origin of microrhythmic layering in arfvedsonite lujavrite from the Ilímaussaq alka i ine complex, South Greeni and. Lithos, 91: 301-318.
15. Bao, Z., Li, C., Zhao, Z., 2016. Metallogeny of the syenite-related Dongping gold deposit in the northern part of the North China Craton: a review and synthesis. Ore Geology Reviews, 73: 198-210.
16. Beard, J.S., Borgia, A., 1989. Temporal variation of mineralogy and petrology in cognate gabbroic enclaves at Arenal Volcano, Costa Rica. Contributions to Mineralogy and Petrology, 103: 110-122.
17. Berberian, F., Berberian, M., 1981. Tectono-Plutonic episodes in Iran. Geological Survey of Iran, Report, 52: 566-593.
18. Berberian, M., King, G.C.P., 1981. Towards a paleogeography and Tectonic evolution of Iran. Canadian Journal of Sciences, 20: 163-183.
19. Bonin, B., 2007. A-type granites and related rocks: evolution of a concept, problems and prospects. Lithos, 97: 1-29.
20. Brenan, J.M., Shaw, H.F., Phinney, D.L., Ryerson, F.J., 1994. Rutileaqueous fluid partitioning of Nb, Ta, Hf, Zr, U and Th: implications for high field strength element depletions in island-arc basalts. Earth and Planetary Science Letters, 128: 327-339.
21. Calanchi, N., Peccerillo, A., Tranne, C.A., Lucchini, F., Rossi, P.L., Kempton, P., Barbieri, M., Wu, T.W., 2002. Petrology and geochemistry of volcanic rocks from the island of Panarea: implications for mantle evolution beneath the Aeolian island arc (southern Tyrrhenian Sea). Journal of Volcanology and Geothermal Research, 115: 367-395.
22. Carvalho, B.B., Janasi, V. de A., Henrique-Pinto, R., 2014. Geochemical and Sr-Nd-Pb isotope constraints on the petrogeniesis of the K-rich Pedra Branca Syenite: implications for the Neoproterozoic post-collisional magmatism in SE Brazil. Lithos, 205: 39-59.
23. Castro, A., Aghazadeh, M., Badrzadeh, Z., Chichorro, M., 2013. Late Eocene-Oligocene post-collisional monzonitic intrusions from the Alborz magmatic belt, NW Iran. An example of monzonite magma generation from a metasomatized mantle source. Lithos, 180-181: 109-127.
24. Chen, C.-H., Chung, S.-H., Hwang, H.-H., Chen, C.-H., Chung, S.L., 2001. Petrology and geochemistry of Neogene continental basalts and related rocks in northern Taiwan (III): alkali basalts and tholeiites from Shiting-Yinko area. Western Pacific Earth Sciences, 1: 19-46.
25. Conrad, W.K., Kay, R.W., 1984. Ultramafic and mafic inclusions from Adak Island: crystallization history, and implications for the nature of primary magmas and crustal evolution in the Aleutian Arc. Journal of Petrology, 25: 88-125.
26. Didier, J., Barbarin, B., 1991. Enclaves and Granite Petrology. Developments in Petrology (Book 13). Elsevier Science.
27. Fazlnia, A.N., 2017. The evolution of arc magmatism related to Palaeotethys in the west of Salmas, north of the Sanandaj-Sirjan Zone, Iran. Geological Quarterly, 61 (1): 124-137.
28. Fazlnia, A.N., 2018a. Geochemistry and tectonic setting of the Chah-Bazargan sub-volcanic mafic dykes, south Sanandaj-Sirjan Zone (SSZ), Iran. Geological Quarterly, 62 (2): 447-458.
29. Fazlnia, A.N., 2018b. Petrogenesis and tectonic significance of Sardasht syenite-monzonite-gabbro-appinite in trusions, NW Iran. International Journal of Earth Sciences, 108: 49-66.
30. Fazlnia, A.N., Alizade, A., 2013. Petrology and geochemistry of the Mamakan gabbroic intrusions, Urumieh (Urmia), Iran: magmatic development of an intra-oceanic arc. Periodico di Mineralogia, 82: 263-290.
31. Ferdowsi, R., Moayyed, M., Kamali, A., 2015. Investigation of petrography, petrogenesis and geochemical features of Kalaibar nepheline syenitic body, Kalaibar, East Azarbaijan. Scientific Quarterly Journal, Geosciences, 24: 29-40.
32. Franęois, T., Agard, P., Bernet, M., Meyer, B., Chung, S.-L., Zarrinkoub, M.H., Burov, E., Monié, P., 2014a. Cenozoic exhumation of the internal Zagros: first constraints from lowtemperature thermochronology and implications for the build-up of the Iranian plateau. Lithos, 206-207: 100-112.
33. Franęois, T., Burov, E., Agard, P., Meyer, B., 2014b. Buildup of a dynamically supported orogenic plateau: numerical modeling of the Zagros/Central Iran case study. Geochemistry, Geophysics, Geosystems, 15: 2632-2654.
34. Frost, B.R., Barnes, C.G., Collins, W.J., Arculus, R.J., Ellis, D.J., Frost, C.D., 2001. A geochemical classification for granitic rocks. Journal of Petrology, 42: 2033-2048.
35. Gill, R., 2010. Igneous Rocks and Processes: a Practical Guide. Malaysia, Wiley-Blackwell.
36. Green, J.C., 1992. Proterozoic rifts. Developments in Precambrian Geology, 10: 97-149.
37. Gualda, G.A.R., Vlach, S.R.V., 2007. The Serra da Graciosa A-type granites and syenites, southern Brazil, Part 3: magmatic evolution and post-magmatic breakdown of amphiboles of the alkaline association. Lithos, 93: 328-339.
38. Haldar, S.K., Tišljar, J., 2014. Introduction to Mineralogy and Petrology. Amsterdam, Elsevier.
39. Harker, A., 1909. The Natural History of Igneous Rocks, first ed. London, Methuen London.
40. Hassanzadeh, J., Wernicke, B.P., 2016. The Neotethyan Sanandaj-Sirjan Zone of Iran as an archetype for passive margin-arc transitions. Tectonics, 35: 586-621.
41. Jafari, A., Fazlnia, A.N., Jamei, S., 2015. Mafic enclaves in north of Urumieh plutonic complex: evidence of magma mixing and mingling, Sanandaj-Sirjan zone, NW Iran. Arabian Journal of Geosciences, 8: 7191-7206.
42. Jafari, A., Fazlnia, A.N., Jamei, S., 2018. Geochemistry, petrology and geodynamic setting of the Urumieh plutonic complex, Sanandaje-Sirjan Zone, NW Iran: new implication for Arabian and Central Iranian plate collision. Journal of African Earth Sciences, 139: 421-439.
43. Jahangiri, A., 2007. Post-collisional Miocene adakitic volcanism in NW Iran: geochemical and geodynamic implications. Journal of Asian Earth Sciences, 30: 433-447.
44. Keskin, M., 2005. Domal uplift and volcanism in a collision zone without a mantle plume: evidence from Eastern Anatolia. www.MantlePlumes.org
45. Kheirkhah, M., Allen, M.B., Emami, M., 2009. Quaternary syn-collision magmatism from the Iran/Turkey border! ands. Journal of Volcanology and Geothermal Research, 182: 1-12.
46. Kogarko, L.N., Williams, C.T., Woolley, A.R., 2006. Compositional evolution and cryptic variation in pyroxenes of the peralkaline Lovozero intrusion, Kola Peninsula, Russia. Mineralogical Magazine, 70: 347-359.
47. Kretz, R., 1983. Symbols for rock-forming minerals. American Mineralogist, 68: 277-279.
48. Litvinovsky, B.A., Jahn, B.M., Eyal, M., 2015. Mantle-derived sources of syenites from the A-type igneous suites-new approach to the provenance of alka l ine silicic magmas. Lithos, 232: 242-265.
49. McClay, K.R., Whitehouse, P.S., Dooley, T., Richards, M., 2004. 3D evolution of fold and thrust belts formed by oblique convergence. Marine and Petroleum Geology, 21: 857-877.
50. McDonough, W.F., Sun, S.S., 1995. The composition of the Earth. Chemical Geology, 120: 223-253.
51. McInnes, B.I.A., Evans, N.J., Belousova, E., Griffin, W.L., 2003. Porphyry copper deposits of the Kerman belt, Iran: timing of mineralization and exhumation processes. CSIRO Scientific Research and Reports: 41.
52. McQuarrie, N., van Hinsbergen, D.J.J., 2013. Retrodeforming the Arabia-Eurasia collision zone: Age of collision versus magnitude of continental subduction. Geology, 41: 315-318.
53. Middlemost, E.A.K., 1994. Naming materials in the magma/igneous rock system. Earth-Science Reviews, 37: 215-224.
54. Moayyed, M., Moazzen, M., Calagari, A.A., Jahangiri, A., Modjarrad, M., 2008. Geochemistry and petrogenesis of lamprophyric dykes and the associated rocks from Eslamy peninsula, NW Iran: implications for deep-mantle metasomatism. Chemie der Erde, 68: 141-154.
55. Molinaro, M., Zeyen, H., Laurencin, X., 2005. Lithospheric structure beneath the south-eastern Zagros Mountains, Iran recent slab break-Mountains, Iran recent slab break-off. Terra Nova, 17: 1-6.
56. Moreno, J.A., Molina, J.F., Montero, P., Abu Anbar, M., Scarrow, J.H., Cambeses, A., Bea, F., 2014. Unraveling sources of A-type magmas in juvenile continental crust: constraints from compositionally diverse Ediacaran post-collisional granitoids in the Katerina Ring Complex, southern Sinai, Egypt. Lithos, 192-195: 56-85.
57. Moreno, J.A., Molina, J.F., Montero, P., Abu Anbar, M., Scarrow, J.H., Cambeses, A., Bea, F., 2016. Th-REE- and Nb-Ta-accessory minerals in post-collisional Ediacaran felsic rocks from the Katerina Ring Complex (S. Sinai, Egypt): an assessment for the fractionation of Y/Nb, Th/Nb, La/Nb and Ce/Pb in highly evolved A-type granites. Lithos, 258-259: 173-196.
58. Müller, D., Rock, N.M.S., Groves, D.I., 1992. Geochemical discrimination between shoshonitic and potassic volcanic rocks in different tectonic settings. Mineralogy and Petrology, 94: 259-289.
59. Murphy, J.B., 2013. Appinite Suites: a record of the role of water in the genesis, transport, emplacement and crystallization of magma. Earth-Science Review, 119: 55-59.
60. Nabavi, M.H., 1976. Principle of Iran Geology. First ed. Geological Survey of Iran, Iran.
61. Neill, I., Meliksetian, K., Allen, M.B., Navasardyan, G., Karapetyan, S., 2013. Pliocene-Quaternary volcanic rocks of NW Armenia: magmatism and lithospheric dynamics within an active orogenic plateau. Lithos, 180-181: 200-215.
62. Neill, I., Meliksetian, K., Allen, M.B., Navasardyan, G., Kuiper, K., 2015. Petrogenesis of mafic collision zone magmatism: the Armenian sector of the Turkish-Iranian Plateau. Chemical Geology, 403: 24-41.
63. Omrani, J., Agard, P.H., Whitechurch, H., Benoit, M., Prouteau Gand Jolivet, L., 2008. Arc magmatism and subduction history beneath the Zagros Mountains, Iran: a new report of adakites and geodynamic consequences. Lithos, 106: 380-398
64. Pearce, J., 1996. Sources and settings of granitic rocks. Episodes, 19: 120-125.
65. Pearce, J.A., Peate, D.W., 1995. Tectonic implications of the composition of volcanic arc magmas. Annual Review of Earth and Planetary Sciences, 23: 251-285.
66. Pearce, J.A., Harris, N.B.W., Tindle, A.G., 1984. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. Journal of Petrology, 25: 956-983.
67. Peccerillo, R., Taylor, S.R., 1976. Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, northern Turkey. Contributions to Mineralogy and Petrology, 58: 63-81.
68. Peters, T.J., Menzies, M., Thirlwall, M., Kyle, P.R., 2008. Zuni-Bandera volcanism, Rio Grande, USA, melt formation in garnet and spinel-facies mantle straddling the asthenosphere- lithosphere boundary. Lithos, 102: 295-315.
69. Rasouli, J., Ghorbani, M., Ahadnejad, V., Poli, G., 2016. Calk-alkaline magmatism of Jebal-e-Barez plutonic complex, SE Iran: implication for subduction-related magmatic arc. Arabian Journal of Geosciences, 9: 287-308.
70. Rezaei, H., Fonoudi, M., Naghizade, R., Eftekhar Nezhad, J., 2009. Geological map of Ghareh-Aghaj, Scale 1:100,000. Geological Survey and Mineral Exploration of Iran.
71. Sarrionandia, F., Carracedo Sanchez, M., Eguiluz, L., Abalos, B., Rodriguez, J., Pin, C., Gil Ibarguchi, J.I., 2012. Cambrian rift-related magmatism in the Ossa-Morena Zone (Iberian Massif), geochemical and geophysical evidence of Gondwana break-up. Tectonophysics, 570-571: 135-150.
72. Shafaii Moghadam, H., Ghorbani, G., Zaki Khedr, M., Fazlnia, A.N., Chiaradia, M., Eyuboglu, Y., Santosh, M., Galindo Francisco, C., Lopez Martinez, M., Gourgaud, A., Arai, S., 2014. Late Miocene K-rich volcanism in the Eslamieh Peninsula (Saray), NW Iran: implications for geodynamic evolution of the Turkish-Iranian High Plateau. Gondwana Research, 26: 1028-1050.
73. Shafiei Bafti, S., Mohajjel, M., 2015. Structural evidence for slip partitioning and inclined dextral transpression along the SE Sanandaj-Sirjan Zone, Iran. International Journal of Earth Sciences, 104: 587-601.
74. Shahabpour, J. 2007. Island-arc affinity of the Central Iranian Volcanic Belt. Journal of Asian Earth Sciences, 30: 652-665.
75. Shand, S.J., 1927. Eruptive Rocks. Wiley-Blackwell, New York.
76. Shaw, D.M., 1970. Trace element fractionation during anatexis. Geochimica et Cosmochimica Acta, 34: 237-243.
77. Stöcklin, J., 1968. Structural history and tectonics of Iran: a review. American Association of Petroleum Geologists, 52:1229-1258.
78. Sun, S.S., McDonough, W.F., 1989. Chemical and isotopic systematic of oceanic basalts: implications for mantle composition and processes. . Geological Society of London, Special Publication, 42: 313-345.
79. Swain, G., Barovich, K., Hand, M., Ferris, G., Schwarz, M., 2008. Petrogenesis of the St Peter Suite, southern Australia: arc magmatism and Proterozoic crustal growth of the South Australian Craton. Precambrian Research, 166: 283-296.
80. Tajbakhsh, G., Emami, M.H., Moinevaziri, H., Rashidnejad Omran, N., 2012. Petrology, geochemistry and tectonomagmatic setting of Kaleybar Intrusion (Eastern Azarbaijan). Scientific Quarterly Journal, Geosciences, 22: 205-224.
81. Thirwall, M.F., Smith, T.E., Graham, A.M., Theodorou, N., Hollings, P., Davidson, J.P., Arculus, R.D., 1994. High field strength element anomalies in arc lavas: source or processes. Journal of Petrology, 35: 819-838.
82. Upton, B.G.J., Parsons, I., Emeleus, C.H., Hodson, M.E., 1996. Layered alkaline igneous rocks of the Gardar Province, South Greenland. . Development in Petrology, 15: 331-363.
83. Upton, B.G.J., Emeleus, C.H., Heaman, L.M., Goodenough, K.M., Finch, A.A., 2003. Magmatism of the mid-Proterozoic Gardar Province, South Greenland: chronology, petrogenesis and geological setting. Lithos, 68: 43-65.
84. Vergés, J., Saura, E., Casciello, E., Fernandez, M., Villasenor, A., Jiménez-Munt, I., García-Castellanos, D., 2011. Crustal-scale cross-sections across the NW Zagros belt: implications for the Arabian margin reconstruction. Geological Magazine, 148: 739-761.
85. Wang, K., Plank, T., Walker, J.D., Smith, E.I., 2002. A mantle melting profile across the Basin and Range, SW USA. Journal of Geophysical Research, 107: 5-21.
86. White, W.M., 2005. Geochemistry. New Jersey Wiley-Blackwell.
87. Woodhead, J., Eggins, S., Gamble, J., 1993. High field strength and transition elelment systematics in island and back-arc basin basalts: evidence for multi-phase extraction and a depleted mantle wedge. Earth and Planetary Science Letters, 114: 491-504.
88. Xiong, X.L., Adamb, T.J., Green, T.H., 2005. Rutile stability and rutile/melt HFSE pariitioning during partial melti ng of hydrous basalt: implications for TTG genesis. Chemical Geology, 218: 339-359.
89. Yang, J.H., Sun, J.F., Zhang, M., Wu, F.Y., Wilde, S.A., 2012. Petrogenesis of silica-saturated and silica-undersaturated syenites in the northern North China Craton related to post-collisional and intraplate extension. Chemical Geology, 328: 149-167.
90. Yeganehfar, H., Ghorbani, M.R., Shinjo, R., Ghaderi, M., 2013. Magmatic and geodynamic evolution of Urumieh-Dokhtar basic volcanism, Central Iran: major, trace element, isotopic, and geochronologic implications. International Geology Review, 55: 767-786.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Kolekcja BazTech
Identyfikator YADDA bwmeta1.element.baztech-346f9b17-1215-45dc-b4f8-6383f76e42fb
Identyfikatory
DOI 10.7306/gq.1449