Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Combustion of RME – diesel and NExBTL – diesel blends with hydrogen in the compression ignition engine

Treść / Zawartość
Warianty tytułu
Języki publikacji
The article presents the test results of the single cylinder compression ignition engine with common rail injection system operating on biofuels and conventional diesel blends with hydrogen. Two types of liquid fuels were tested: blend of the 7% Rapeseed Methyl Ester (RME) with conventional diesel fuel and Neste Pro Diesel – blend of the 15% Hydrotreated Vegetable Oil (HVO), produced by Neste Oil Corporation with conventional diesel fuel. The purpose of this investigation was to examine the influence of the hydrogen addition to biofuels and diesel blends on combustion phases, autoignition delay, engine performance efficiency and exhaust emissions. Hydrogen fraction was changed within the range from 0 to 43% by energy. Hydrogen was injected into the intake manifold, where it created homogeneous mixture with air. Tests were performed at both fixed and optimal injection timings at low, medium, and nominal engine load. After analysis of the engine bench tests and simulation with AVL BOOST software, it was observed that increasing hydrogen fraction shortened the fuel ignition delay phase and it affected the main combustion phase. Moreover, decrease of carbon monoxide (CO), carbon dioxide (CO2) and smoke opacity was observed with increase of hydrogen amounts to the engine. However, increase of the nitrogen oxide (NOx) concentration in the engine exhaust gases was observed.
Słowa kluczowe
  • Vilnius Gediminas Technical University Faculty of Transport Engineering J. Basanavičiaus Street 28, LT-03224 Vilnius, Lithuania tel.: +370 5 2370583, fax: +370 5 2700112
  • Czestochowa University of Technology Faculty of Mechanical Engineering and Computer Science Dabrowskiego Street 69, 42-201 Czestochowa, Poland tel.: +48 34 3250524, fax: +48 34 3250555
  • Czestochowa University of Technology Faculty of Mechanical Engineering and Computer Science Dabrowskiego Street 69, 42-201 Czestochowa, Poland tel.: +48 34 3250524, fax: +48 34 3250555
  • Czestochowa University of Technology Faculty of Mechanical Engineering and Computer Science Dabrowskiego Street 69, 42-201 Czestochowa, Poland tel.: +48 34 3250524, fax: +48 34 3250555
  • Vilnius Gediminas Technical University Faculty of Transport Engineering J. Basanavičiaus Street 28, LT-03224 Vilnius, Lithuania tel.: +370 5 2370583, fax: +370 5 2700112
  • [1] Murray, J., King, D., Oil’s tipping point has passed, Nature, 481 (7382), pp. 433-435, 2012.
  • [2] CO2 emissions from fuel combustion. Overview. International Energy Agency Highlights. 2017 edition, online cit.: 2018-05-07, available from: freepublications/publication/CO2EmissionsFromFuelCombustion2017Overview.pdf, 2017.
  • [3] Hilbers, T. J., Sprakel, L. M. J., van den Enk, L. B. J., Zaalberg, B., van den Berg, H., van der Ham, L. G. J., 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. Chem. Eng. Technol., 38, No. 4, pp. 651-657, 2015.
  • [4] Raslavičius, L., Keršys, A., Starevičius, M., Sapragonas, J., Bazaras, Ž., Biofuels, sustainability and the transport sector in Lithuania, Renewable and Sustainable Energy Reviews, Vol. 32, pp. 328-346, 2014.
  • [5] Silvestrini, A., Monni, S., Pregernig, M., Barbato, A., Dallemand, F.-J., Croci, E., et al., The role of cities in achieving the EU targets on biofuels for transportation: the cases of Berlin, London, Milan and Helsinki, Transp Res Part A: Policy Pract, Vol. 44, pp. 403-417, 2010.
  • [6] Mikkonen, S., Second-generation renewable diesel offers advantages, Hydrocarbon Processing, Vol. 87, pp. 63-66, 2008.
  • [7] Hoekman, S. K., Broch, A., Robbins, C., Ceniceros, E., Natarajan, M., Review of biodiesel composition, properties, and specifications, Renewable and Sustainable Energy Reviews, Vol. 16, pp. 143-169, 2012.
  • [8] Engman, A., Hartikka, T., Honkanen, M., Kiiski, U., Kuronen, Lehto, K., et al., Neste Renewable Diesel Handbook, Neste Proprietary Publication, Espoo 2016.
  • [9] Labeckas, G., Slavinskas, S., The effect of diesel fuel blending with rapeseed oil and RME on engine performance and exhaust emissions, Journal of KONES Internal Combustion Engines, Vol. 12, 1-2., 2005
  • [10] Lebedevas, S., Makareviciene, V., Sendzikiene, E., Žaglinskis, J., Oxidation stability of biofuel containing Camelina sativa oil methyl esters and its impact on energy and environmental indicators of diesel engine, Energy Conversion and Management, Vol. 65, pp. 33-40, 2013.
  • [11] Labeckas, G., Slavinskas, S., Mažeika, M., The effect of ethanol–diesel–biodiesel blends on combustion, performance and emissions of a direct injection diesel engine, Energy Conversion and Management, Vol. 79, pp. 698-720, 2014.
  • [12] Rimkus, A., Žaglinskis, J., Rapalis, P., Skačkauskas, P., Research on the combustion, energy and emission parameters of diesel fuel and a biomass-to-liquid (BTL) fuel blend in a compression-ignition engine, Energy Conversion and Management, Vol. 106, pp. 1109-1117, 2015.
  • [13] Aatola, H., Larmi, M., Sarjovaara, T., Mikkonen, S., Hydrotreated Vegetable Oil (HVO) as a renewable diesel fuel: Trade-off between NOx, particulate emission, and fuel consumption of a heavy duty engine, SAE Technical Paper, 2008-01-2500, 12 p., 2008.
  • [14] Aldhaidhawi, M., Chiriac, R., Bădescu, V., Descombes, G., Podevin, P., Investigation on the mixture formation, combustion characteristics and performance of a Diesel engine fuelled with Diesel, Biodiesel B20 and hydrogen addition, International Journal of Hydrogen Energy, Vol. 42, pp. 16793-16807, 2017.
  • [15] Barrios, C. C., Domínguez-Sáez, A., Hormigo, D., Influence of hydrogen addition on combustion characteristics and particle number and size distribution emissions of a TDI diesel engine, Fuel, Vol. 199, pp. 162-168, 2017.
  • [16] Bhardwaj, O. P., Lüers, B., Holderbaum, B., Körfer, T., Pischinger, S., Honkannen, M., Utilization of HVO fuel properties in a high efficiency combustion system SAE Research Paper 20154062, Int J Automot Eng, Vol. 6, pp. 75-82, 2015.
  • [17] Ewphun, P.-P., Tan Vo, Ch., Srichai, P., Charoenphonphanich, Ch., Sato, S., Kosaka, H., Combustion characteristics of hydrotreated vegetable oil – diesel blend under EGR and supercharged conditions, International Journal of Automotive Technology, Vol. 18, Iss. 4, pp. 643-652, 2017.
  • [18] Erkkila, K., Nylund, N. O., Hulkkone, T., Tilli, A., Mikkonen, S., Saikkonen, P., Makinen, R., Amberia, A., Emission performance of paraffinic HVO diesel fuel in heavy-duty vehicles. SAE paper 2011-01-1966, 2011.
  • [19] Imperato, M., Tilli, A., Sarjovaara, T., Larmi, M., Large-bore compression-ignition engines: high NOx reduction achieved at low load with hydro-treated vegetable oil, SAE paper 2011-01-1956, 2011.
  • [20] Lehto, K., Elonheimo, A., Hakkinen, K., Sarjovaara, T., Larmi, M., Emission reduction using hydrotreated vegetable oil (HVO) with miller timing and EGR in diesel combustion, SAE paper 2011-01-1955, 2011.
  • [21] Murtonen, T., Aakko-Saksa, P., Kuronen, M., Mikkonen, S., Lehtoranta, K., Emissions with heavy-duty diesel engines and vehicles using FAME, HVO and GTL fuels with and without DOC + POC aftertreatment, SAE paper 2009-01-2693, 2009.
  • [22] Pflaum, H., Hofmann, P., Geringer, B., Weissel, W., Potential of hydrogenated vegetable oil (HVO) in a modern diesel engine, SAE paper 2010-32-0081, 2010.
  • [23] Pirjola, L., Rönkkö, T., Saukko, E., Parviainen, H., Malinen, A., Alanen, J., Saveljeff, H., Exhaust emissions of non-road mobile machine: Real-world and laboratory studies with diesel and HVO fuels, Fuel. Vol. 202, pp. 154-164,, 2017.
  • [24] Rocha, H. M. Z., Pereira, R. S., Nogueira, M. F. N., Belchior, C. R. P., Tostes, M. E. L., Experimental investigation of hydrogen addition in the intake air of compressed ignition engines running on biodiesel blend, International Journal of Hydrogen Energy, pp. 1-10, 2016.
  • [25] Saravanan, N., Nagarajan, G., Narayanasamy, S., Experimental investigation on performance and emission characteristics of DI diesel engine with hydrogen fuel, SAE Technique Paper, 2007-01-17, 2007.
  • [26] Szwaja, S., Grab-Rogalinski, K., Hydrogen combustion in a compression ignition diesel engine, International Journal of Hydrogen Energy, Vol. 34, pp. 4413-4421, 2009.
  • [27] No, S.-Y., Application of hydrotreated vegetable oil from triglyceride based biomass to CI engines – A review, Fuel, Vol. 115, pp. 88-96, 2014.
  • [28] Chen, P. C., Wang, W. C., Roberts, W. L., Fang, T., Spray and atomization of diesel fuel and its alternatives from a single-hole injector using a common rail fuel injection system, Fuel, Vol. 103, pp. 850-861, 2013.
  • [29] Heywood, J. B., Internal combustion engine fundamentals – Co – Singapore for Manufacture and Export (International edition), p. 930, 1988.
  • [30] Mehra, R. K., Duan, H., Juknelevičius, R., Ma, F., Li, J., Progress in hydrogen enriched compressed natural gas (HCNG) internal combustion engines – A comprehensive review, Renewable and Sustainable Energy Reviews, Vol. 80, pp. 1458-1498, 2017.
  • [31] AVL BOOST v 2011.2. 2011. AVL BOOST Users Guide, Graz, Austria, p 297, 2011.
  • [32] Szwaja, S., Knock and combustion rate interaction in a hydrogen fuelled combustion engine, Journal of KONES Powertrain and Transport, Vol. 18, No. 3, 2011.
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.