Narzędzia help

Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
next last
cannonical link button

http://yadda.icm.edu.pl:80/baztech/element/bwmeta1.element.baztech-33647b66-20a3-4eff-a4c4-38c02f41cd13

Czasopismo

Acta of Bioengineering and Biomechanics

Tytuł artykułu

Influence of fibre reinforcement on selected mechanical properties of dental composites

Autorzy Niewczas, A. M.  Zamościńska, J.  Krzyżak, A.  Pieniak, D.  Walczak, A.  Bartnik, G. 
Treść / Zawartość
Warianty tytułu
Języki publikacji EN
Abstrakty
EN For splinting or designing adhesive bridges, reconstructive composite structures with increased mechanical properties owing to embedded reinforcement fibres are used. The aim of this article was to determine the influence of glass and aramid fibres on the mechanical strength of composites reinforced with these fibres. Methods: Two polymer-ceramic microhybrid materials: Boston and Herculite were tested. Three types of reinforcement fibres were used: aramid (Podwiązka) with a single layer weave, a single layer weave glass fibre (FSO) and triple layer weave glass fibre (FSO evo). Tests were conducted in accordance with the requirements of ISO 4049:2009. The following material types were chosen for research: Boston, Boston + Podwiązka, Herculite, Herculite + Podwiązka, Herculite + FSO and Herculite + FSO evo. The scope of research included: flexural strength B, bending modulus of elasticity εB and work to failure of the reinforced composite Wfb. Additionally, microscopic observations of fracture occurring in samples were made. Results: In comparison: the Herculite (97.7 MPa) type with the Herculite + FSO evo (177.5 MPa) type was characterized by the highest strength. Fibre reinforcement resulted in decreasing the elasticity modulus: Herculite + reinforcement (6.86 GPa; 6.33 GPa; 6.11 GPa) in comparison with the Herculite (9.84 GPa) and respectively Boston + reinforcement (10.08 GPa) as compared with the Boston (11.81 GPa). Conclusions: Using glass fibres increases flexural strength of the test composites. Using aramid fibres does not change their strength. The elasticity modulus of the reinforced reconstructive structures decreases after application of either type of fibres. However, their resistance to the crack initiation increases.
Słowa kluczowe
PL właściwości mechaniczne   włókno wzmacniające   kompozyty ceramiczno-polimerowe  
EN mechanical properties   ceramic-polymer light-cured compceramicosites   fibre reinforcement  
Wydawca Oficyna Wydawnicza Politechniki Wrocławskiej
Czasopismo Acta of Bioengineering and Biomechanics
Rocznik 2017
Tom Vol. 19, nr 2
Strony 3--10
Opis fizyczny Bibliogr. 20 poz., rys., tab., wykr.
Twórcy
autor Niewczas, A. M.
  • Department of Conservative Dentistry with Endodontics, Medical University of Lublin, Poland, agatan117@wp.pl
autor Zamościńska, J.
  • Department of Conservative Dentistry with Endodontics, Medical University of Lublin, Poland
autor Krzyżak, A.
  • Department of Airframe and Engine, Polish Air Force Academy, Dęblin, Poland
autor Pieniak, D.
  • Department of Applied Mechanics, Main School of Fire Service in Warsaw, Poland
autor Walczak, A.
  • Department of Applied Mechanics, Main School of Fire Service in Warsaw, Poland
autor Bartnik, G.
  • Department of Mechanical Engineering and Automation, University of Life Science in Lublin, Poland
Bibliografia
1. ABDULMAJEED A.A., NARHI T.O., VALLITTU P.K., LASSILA L.V., The effect of high fibre fraction on some mechanical properties of unidirectional glass fibrereinforced composite, Dent Mater, 2001, 27: 313-321.
2. ALANDER P., LASSILA L.V.J., VALLITTU P.K., The span length and crosssectional design affect values of strength, Dent Mater, 2005,21: 347-353.
3. CHUNG K., LIN T., WANG F., Flexural strength of a provisional resin material with fiber addition J Oral Rehab, 1998, 25(3): 214-217.
4. DYER S., LASSILA L., ALANDER P., VALLITTU P., Static strength of molar region direct technique glass fibre-reinforced composite fixed partial dentures, J Prosthet Dent 2005, 94: 219–226.
5. DYER S., LASSILA L., JOKINEN M., VALLITTU P., Effect of fiber position and orientation on fracture load of fiber-reinforced composite, Dent Mater, 2004: 20, 947– 955.
6. BUNSELL A. R., Fibres for composite reinforcement: properties and microstructures. In: Composites reinforcements for optimum performance (edited by Boisse P.), Woodhead Publishing Limited, 2011. ISBN:978-1-84569-965-9.
7. HEUMEN VAN C.C.M., KREULEN C.M., BRONKHORST E.M., LESAFFRE E., CREUGERS N.H.J., Fiber-reinforced dental composites in beam testing, Dent Mater, 2008, 24: 1435–1443.
8. ISO 4049 Dentistry – Polymer-based filling, restorative and luting materials, 2000.
9. KELSEY W.P., LATTA M.A., SHADDY R.S., STANSILAV C.M.,Physical properties of three packable resin-composite restorative materials, Oper Dent, 2000, 25: 331–335.
10. KERMANSHAH H., MOTEVASSELIAN F., Immediate tooth replacement using fiber-reinforced composite and natural tooth pontic, Oper Dent, 2010, 35(2): 238-245.
11. CHLAWA K. K., Composite Materials. Science and engineering, Springer, 1998. ISBN: 978-4419-3124-5.
12. LEDA H., Szklane czy węglowe włókna w kompozytach polimerowych, Kompozyty 2003, 3: 209-215.
13. MANHART J., KUNZELMANN K.H., CHEN H.Y., HICKEL R., Mechanical properties of new composite restorative materials, J. of Biomed Mater Res, 2000, 53: 353-–361.
14. PICK B., MEIRA J.B.C., DRIEMEIER L., BRAGA R.R., A critical view on biaxial and short-beam uniaxial flexural strength tests applied to resin composites using Weibull, fractographic and finite element analyses. Dent Mater, 2010, 26: 83–90.
15. PIENIAK D., NIEWCZAS A., KORDOS P., Influence of thermal fatigue and ageing on the microhardness of polymer-ceramic composites for biomedical applications, Eksploatacja i Niezawodność - Maitenace and Reliability, 2012, 2: 181–188.
16. PIENIAK D., NIEWCZAS A.M, WALCZAK M., ZAMOŚCIŃSKA J. Influence of photopolymerization parameters on the mechanical properties of polymer - ceramic composites applied in the conservative dentistry, Acta Bioeng Biomech, 2014, 16(3): 29-35.
17. RAMESH M., PALANIKUMAR K., REDDY K. H., Mechanical property evaluation of sisal-jute-glass fibre reinforced polyester composites, Composites: Part B, 2013, 48: 1-9.
18. SARIDAG S., GOKHAN O.A., PEKKAN G., Fracture strength and bending of allceramic and fibre-reinforced composites in inlay-retained fixed partial dentures, J of Dent Sci, 2012, 7: 159-164.
19. WEN-CHENG CHEN, CHUN-CHENG HUNG, YU-CHIUN HUANG, CHIHKUANG WANG, JEN-CHYAN WANG, Fracture load of provisional fixed partial dentures with long-span fibre-reinforced acrylic resin and thermocycling. J Dent Sci 2009;4(1): 25−31.
20. ZHANDAROV S., MADER E., Characterization of fibre/matrix interface strength: applicability of different tests, approaches and parameters, Comp Sci Technol, 2005, 65: 149-160.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Kolekcja BazTech
Identyfikator YADDA bwmeta1.element.baztech-33647b66-20a3-4eff-a4c4-38c02f41cd13
Identyfikatory
DOI 10.5277/ABB-00486-2015-04