Narzędzia help

Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
next last
cannonical link button

http://yadda.icm.edu.pl:80/baztech/element/bwmeta1.element.baztech-32c86754-1172-44f7-a9cd-da09d76b9856

Czasopismo

Acta of Bioengineering and Biomechanics

Tytuł artykułu

Mechanical properties variation and constitutive modelling of biomedical polymers after sterilization

Autorzy Zanelli, L.  Todros, S.  Carniel, E. L.  Pavan, P. G.  Natali, A. N. 
Treść / Zawartość
Warianty tytułu
Języki publikacji EN
Abstrakty
EN Purpose: In this work, the mechanical behavior of two block copolymers for biomedical applications is studied with particular regard to the effects induced by a steam sterilization treatment that biomedical devices usually undergo in healthcare facilities. This investigation is aimed at describing the elasto-plastic behavior of the stress-strain response, determining a functional dependence between material constitutive parameters, to obtain an optimal constitutive model. Methods: The mechanical properties of these polymers are analyzed through uniaxial tensile tests, before and after the sterilization process. The effect of sterilization on the mechanical behavior is evaluated. The Ramberg-Osgood model is used to describe the elasto-plastic behavior of the stress-strain response. Results: Data from uniaxial tensile tests are discussed in the light of previous data on the same polymeric materials, in order to highlight the correlation between physicochemical and mechanical properties variation. The material constitutive parameters are determined and the functional dependence between them is found, thus enabling an optimal constitutive model to be obtained. Conclusions: The effect of sterilization on the material constitutive parameters is studied, to evaluate the suitability of the model in describing the mechanical response of biomedical polymer before and after sterilization treatment. The same approach can be applied to other biomaterials, under various tensile tests, and for several processes that induce variation in mechanical properties.
Słowa kluczowe
PL sterylizacja   właściwości sprężyste   model konstytutywny   polimery biokompatybilne  
EN sterilization   elasto-plastic behavior   constitutive model   biocompatible polymers   elastic properties   biomedical device  
Wydawca Oficyna Wydawnicza Politechniki Wrocławskiej
Czasopismo Acta of Bioengineering and Biomechanics
Rocznik 2017
Tom Vol. 19, nr 3
Strony 3--9
Opis fizyczny Bibliogr. 19 poz., wykr.
Twórcy
autor Zanelli, L.
  • Department of Mathematics, via Trieste 63, University of Padova, Italy
  • Centre for Mechanics of Biological Materials, via Marzolo 9, University of Padova, Italy
autor Todros, S.
  • Centre for Mechanics of Biological Materials, via Marzolo 9, University of Padova, Italy , silvia.todros@unipd.it
  • Department of Industrial Engineering, via Venezia 1, University of Padova, Italy
autor Carniel, E. L.
  • Centre for Mechanics of Biological Materials, via Marzolo 9, University of Padova, Italy
  • Department of Industrial Engineering, via Venezia 1, University of Padova, Italy
autor Pavan, P. G.
  • Centre for Mechanics of Biological Materials, via Marzolo 9, University of Padova, Italy
  • Department of Industrial Engineering, via Venezia 1, University of Padova, Italy
autor Natali, A. N.
  • Centre for Mechanics of Biological Materials, via Marzolo 9, University of Padova, Italy
  • Department of Industrial Engineering, via Venezia 1, University of Padova, Italy
Bibliografia
[1] Betten J., Recent advances in applications of tensor functions in continuum mechanics, Adv Appl Mech, 2001, 37, 277-364.
[2] Boubakri A., Elleuch K., Guermazi N., Ayedi H.F., Investigations on hygrothermal aging of thermoplastic polyurethane material, Mater Des, 2009, 30(10), 39583965.
[3] Brondino G., Vicario G., An empirical comparison of estimating methods for the RambergOsgood EIV model, Commun Stat B-Simul, 2006, 35(2), 407-417.
[4] Cherng J .Y., Hou T. Y., Shih M .F., Talsma H., Hennink W.E., Polyurethane-based drug delivery systems, Int J Pharm, 2013, 25, 450(1-2), 145-162.
[5] Geissler, M., Roy, E., Diaz-Quijada G. A., Galas J. C., Veres T., microfluidic patterning of miniaturized DNA arrays on plastic substrates, ACS Appl Mater Interfaces, 2009, 1(7), 1387-1395.
[6] Gupta S., Chandra T., Sikder A., Menon A., Bhowmick A.K., Accelerated weathering behavior of poly(phenylene ether)-based TPE, J Mater Sci, 2008, 43, 3338-3350.
[7] Krol P., Synthesis methods, chemical structures and phase structures of linear polyurethanes. Properties and applications of linear polyurethanes in polyurethane elastomers, copolymers and ionomers, Prog Mater Sci, 2007, 52(6), 915-1015.
[8] Murray K. A., Kennedy J. E., McEvoy B., Vrain O., Ryan D., Cowman R., Higginbotham C.L., Effects of gamma ray and electron beam irradiation on the mechanical, thermal, structural and physicochemical properties of poly(ether-block-amide) thermoplastic elastomers, J Mech Behav Biomed Mater, 2013, 17, 252-268.
[9] Nakai K., Yokoyama T., Uniaxial compressive response and constitutive modeling of selected polymers over a wide range of strain rates, J Dynamic Behavior Mater, 2015, 1, 15-27.
[10] Peppas N. A., Langer R., New challenges in biomaterials, Science, 1994, 263 (5154), 1715- 1720.
[11] Ramberg W., Osgood W. R., Description of stress-strain curves by three parameters, Technical Note No. 902, National Advisory Committee for Aeronautics, 1943.
[12] Rogers W. J., Sterilization of Polymer Healthcare Products, Rapra Technology Ltd., 2005.
[13] Sheth J. P., Xu J., Wilkes G. L., Solid state structure-property behavior of semicrystalline poly(ether-block-amide) PEBAX thermoplastic elastomers, Polymer, 2003, 44, 743-756.
[14] Singh B., Sharma N., Mechanistic implications of plastic degradation, Polym Degrad Stabil, 2008, 93, 561-584.
[15] Todros S., Natali A. N., Pace G., Di Noto V., Correlation between chemical and mechanical properties in renewable poly(ether-block-amide)s for biomedical applications, Macromol Chem Physic, 2013, 214(18), 2061-2072.
[16] Todros S., Natali A. N., Pace G., Di Noto V., Effect of steam on the structural and morphological stability of renewable poly(ether-block-amide)s, J Polym Sci Pol Phys, 2014, 52(5), 409-418.
[17] Todros S., Natali A. N., Piga M., Giffn G.A., Pace G., Di Noto V., Interplay between chemical structure and ageing on mechanical and electric relaxations in poly(ether-blockamide)s, Polym Degrad Stabil, 2013, 98(6), 1126-1137.
[18] Todros S., Venturato C., Natali A. N., Pace G., Di Noto V., Effect of steam on structure and mechanical properties of biomedical block copolymers, J Polym Sci Pol Phys, 2014, 52(20), 1337-1346.
[19] White J. R., Turnbull A., Weathering of polymers: mechanisms of degradation and stabilization, testing strategies and modelling, J Mater Sci, 1994, 29, 584613.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Kolekcja BazTech
Identyfikator YADDA bwmeta1.element.baztech-32c86754-1172-44f7-a9cd-da09d76b9856
Identyfikatory
DOI 10.5277//ABB-00756-2016-01