PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Charakterystyka porowatych powłok otrzymanych na niobie i stopie Ti-Nb-Zr (TNZ) w procesie elektrolitycznego utleniania plazmowego (PEO)

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
EN
Characteristics of porous biocompatible coatings obtained on Niobium and Titanium-Niobium-Zirconium (TNZ) alloy by Plasma Electrolytic Oxidation
Konferencja
Szkoła Naukowa Obróbek Erozyjnych 2015
Języki publikacji
PL
Abstrakty
PL
Elektrolityczne utlenianie plazmowe (POE) zastosowano do biomateriałów metalowych, takich jak niob i stop Ti-Nb-Zr (TNZ). Obróbkę prowadzono w elektrolicie kwasu H3PO4 z dodatkiem azotanu miedzi. Otrzymane porowate powłoki badano z użyciem SEM/EDX. Badania uzyskanych powłok wykazały, że są one wzbogacone w jony miedzi (ponad 3,5 %mas.), podczas gdy Cu/P oraz Cu/(P+osnowa) wynosiły odpowiednio 0,2 i 0,07. Taka charakterystyka sprzyja poprawie biokompatybilności badanego biomateriału.
EN
The Niobium and Titanium-Niobium-Zirconium (TNZ) alloy biomaterials were treated by Plasma Electrolytic Oxidation (PEO) in view of getting porous surface layers. For the PEO process, a special set up was built to perform the experiments in the electrolyte composed of concentrated H3PO4, with an addition of copper II nitrate. The surface layers were studied by means of SEM and EDS methods to reveal the effects of porosity and compositions. It was found one may create porous coatings on niobium and on TNZ alloy, enriched with copper ions. Over 3.5 wt% content of copper, with Cu/P and Cu/(P+Matrix) ratios equaling to 0.2 and 0.07, respectively, may assure a better biocompatibility of the biomaterials.
Czasopismo
Rocznik
Strony
15--18
Opis fizyczny
Bibliogr. 46 poz., rys.
Twórcy
autor
Bibliografia
  • 1. Simka W., Sowa M., Socha R.P., Maciej A., Michalska J., Anodic oxidation of zirconium in silicate solutions. Electrochim. Acta, 104, 518-525, 2013.
  • 2. Simka W., Sadowski A., Warczak M., Iwaniak A., Dercz G., Michalska J., Maciej A., Modification of titanium oxide layer by calcium and phosphorus. Electrochim. Acta, 56(24), 8962-8968, 2011.
  • 3. Simka W., Nawrat G., Chlode J., Maciej A., Winiarski A., Szade J., Radwański K., Gazdowicz J., Electropolishing and anodic pas-sivation of Ti6Al7Nb alloy. Przemysł Chemiczny, 90(1), 84-90, 2011.
  • 4. Yu S., YU Z., Wang G., Han J., Ma X., Dargusch M.S., Preparation and osteoinduction of active micro-arc oxidation films on Ti-3Zr-2Sn-3Mo-25Nb alloy. Trans. Nonferrous Met. Soc. China, 21, 573-580, 2011.
  • 5. Sowa M., Kazek-Kęsik A., Socha R.P., Dercz G., Michalska J., Simka W., Modification of tantalum surface via plasma electrolytic oxidation in silicate solutions. Electrochim. Acta, 114, 627-636, 2013.
  • 6. Jin F.Y., Tong H.H., Shen L.R., Wang K., and Chu P.K., Microstructural and Dielectric Properties of Porous TiO2 Films Synthesized on Titanium Alloys by Micro-Arc Discharge Oxidization. Mater. Chem. Phys., 100(1), 31-33, 2006.
  • 7. Hryniewicz T., Karpiński T., Łukianowicz C., The evaluation of electrolytically polished surfaces. Wear, 45(3), 335-343, 1977.
  • 8. Hryniewicz T., The solution of electropolishing problems for some particular cases. Surf. Technol., 8 (5), 37-45, 1979.
  • 9. Hryniewicz T., Krzywe polaryzacji anodowej a proces elektropolero-wania metali. Ochrona przed Korozją, 28(11-12), 273-276, 1985.
  • 10. Hryniewicz T., Hryniewicz Z., On the solution of equation of diffusion in electropolishing, J. Electrochem. Soc., 136(12), 3767-3769, 1989.
  • 11. Hryniewicz T., Fizykochemiczne i technologiczne podstawy procesu elektropolerowania stali. Wydawnictwo Uczelniane WSI, Koszalin, 1989.
  • 12. Hryniewicz T., Concept of microsmoothing in the electropolishing process, Surf. Coat. Technol., 64(2), 75-80, 1994.
  • 13. Hryniewicz T., Rokicki R., Rokosz K., Magnetoelectropolishing pro-cess improves characteristics of finished metal surfaces. Met. Finish., 104(12), 26-33, 2006.
  • 14. Hryniewicz T., Wstęp do obróbki powierzchniowej biomateriałów metalowych. Wydawnictwo Uczelniane Politechniki Koszalińskiej, Koszalin, 2007.
  • 15. Rokicki R., Hryniewicz T., Nitinol Surface Finishing by Magnetoelectropolishing. Trans. Inst. Met. Finish., 86, 280-285, 2008.
  • 16. Rokicki R., Hryniewicz T., Rokosz K., Modifying Metallic Implants with Magnetoelectropolishing. Medical Device & Diagnostic Industry, 30(1), 102-111, 2008 (INVITED PAPER); devicelink.com/mddi.
  • 17. Hryniewicz, T., Rokosz, K., Analysis of XPS results of AISI 316L SS electropilished and magnetoelectropolished at varying conditions. Surf. Coat. Technol., 204, 2583-2592, 2010.
  • 18. Hryniewicz T., Konarski P., Rokosz K., Rokicki R., SIMS analysis of hydrogen content in near surface layers of AISI 316L SS after electrolytic polishing under different conditions. Surf. Coat. Technol., 205(17-18), 4228-4236, 2011.
  • 19. Hryniewicz, T., Rokosz, K., Zschommler Sandim H.R., SEM/EDX and XPS studies of niobium after electropolishing. Appl. Surf. Sci., 263, 357-361, 2012; DOI: 10.1016/j.apsusc.2012.09.060
  • 20. Rokosz K., Polerowanie elektrochemiczne stali w polu magnetycznym. Monografia, Wyd. Uczeln. Politechniki Koszalińskiej, Koszalin, 2012.
  • 21. Hryniewicz T., Rokicki R., Rokosz K., Co-Cr alloy corrosion behaviour after electropolishing and "magnetoelectropolishing" treatments. Mater. Lett., 62(17-18), 3073-3076, 2012.
  • 22. Rokicki R., Hryniewicz T., Enhanced oxidation-dissolution theory of electropolishing. Trans. Inst. Met. Finish., 90(4), 188-196, 2012.
  • 23. Hryniewicz T., Rokosz K., Investigation of selected surface properties of AISI 316L SS after magnetoelectropolishing. Mater. Chem. Phys., 122(1), 169-174, 2010.
  • 24. Hryniewicz T., Rokosz K., Polarization Characteristics of Magnetoelectropolishing Stainless Steels. Mater. Chem. Phys., 122, 169-174, 2010; DOI: 10.1016/j.matchemphys.2010.02.055
  • 25. Hryniewicz T., Rokosz K., Micheli V., Auger/AES surface film measurements on AISI 316L biomaterial after magnetoelectropolishing. PAK (Pomiary Automatyka Kontrola), 57(6), 609-614, 2011.
  • 26. Hryniewicz T., Rokosz K., Valiček J., Rokicki R., Effect of magnetoelectropolishing on nanohardness and Young’s modulus of titanium biomaterial. Mater. Lett., 83, 69-72, 2012; DOI: 10.1016/j.matlet.2012.06.010
  • 27. Hryniewicz T., Rokosz K., Rokicki R., Prima F., Nanoindentation and XPS Studies of Titanium TNZ Alloy after Electrochemical Polishing in a Magnetic Field. Materials, 8, 205-215, 2015; DOI: 103390/ma80110205.
  • 28. Rokicki R., Hryniewicz T., Pulletikurthi C., Rokosz K., Munroe N., Towards a Better Corrosion Resistance and Biocompatibility Improvement of Nitinol Medical Devices. J. Mater. Eng. Perform., 24(4), 1634-1640, 2015.
  • 29. Rokosz K., Hryniewicz T., Raaen S., Valiček J., SEM/EDX, XPS, corrosion and surface roughness characterization of AISI 316L SS after electrochemical treatment in concentrated HNO3. Techn. Gazette, 22(1), 125-131, 2015.
  • 30. Hryniewicz T., Rokosz K., Rokicki R., Prima F., Nanoindentation studies of TNZ and Ti2448 biomaterials after magnetoelectro-polishing. Advances in Materials Science, 14_3(41), 34-44, 2014.
  • 31. Hryniewicz T., Rokosz K., Corrosion resistance of magnetoelectropolished AISI 316L SS biomaterial. Anti-Corrosion Methods and Materials, 61(2), 57-64, 2014.
  • 32. Hryniewicz T., Rokosz K., Rokicki R., Magnetic Fields for Electropolishing Improvement: Materials and Systems. Intern. Letters of Chemistry, Physics and Astronomy, 4, 98-108, 2014; http://www.ilcpa.pl/wp-content/uploads/2013/10/ILCPA-4-2014-98-1081.pdf
  • 33. Hryniewicz T., Rokosz K., Highlights of magnetoelectropolishing. Frontiers in Materials: Corrosion Research, 1(3), 1-7, 2014 (Inaugu-ral Article); DOI: 10.3389/fmats.2014.00003
  • 34. Rokosz K., Hryniewicz T., Rzadkiewicz S., Raaen S., High-Current-Density Electropolishing (HDEP) of AISI 316L (EN 1.4404) Stainless Steel. Techn. Gazette, 22(2), 415-424, 2015.
  • 35. Rokosz K., Hryniewicz T., Lukeš J., Šepitka J., Nanoindentation studies and modeling of surface layers on austenitic stainless steels by extreme electrochemical treatments. Surf. Interf. Anal., 47(6), 643-647, 2015.
  • 36. Rokosz K., Hryniewicz T., Rzadkiewicz S., XPS study of surface layer formed on AISI 316L after High-Current Density Electropolish-ing. Solid State Phenomena, 27, 155-158, 2015.
  • 37. Rokosz K., Lahtinen J., Hryniewicz T., Rzadkiewicz S., XPS depth profiling analysis of passive surface layers formed on austenitic AISI 304L and AISI 316L SS after High-Current-Density Electropolishing. Surf. Coat. Technol., 2015 (to appear); online http://dx.doi.org/10.1016/j.surfcoat.2015.06.022
  • 38. Jelinek M., Kocourek T., Remsa J., Weiserovác M., Jurek K., Mikšovský J., Strnad J., Galandáková A., Ulrichová J., Antibacterial, cytotoxicity and physical properties of laser — Silver doped hydroxy-apatite layers. Mater. Sci. Eng.: C, 33(3), 1242–1246, 2013.
  • 39. Mishra G., Dash B., Pandey S., Mohanty P.P., Antibacterial actions of silver nanoparticles incorporated Zn–Al layered double hydroxide and its spinel. J. Environ. Chem. Eng., 1(4), 1124–1130, 2013.
  • 40. Rajendrana A., Pattanayak D.K., Silver incorporated antibacterial, cell compatible and bioactive titania layer on Ti metal for biomedical applications. RSC Advances, 106(4), 61444-61455, 2014.
  • 41. Trujillo N.A., Oldinski R.A., Mad H., Bryers J.D., Williams J.D., Popat K.C., Antibacterial effects of silver-doped hydroxyapatite thin films sputter deposited on titanium. Mater. Sci. Eng.: C, 32(8), 2135–2144, 2012.
  • 42. Xiangyu Zhang, Xiaobo Huang, Yong Ma, Naiming Lin, Ailan Fan, Bin Tang, Bactericidal behavior of Cu-containing stainless steel surfaces. Appl. Surf. Sci., 258, 10058–10063, 2012.
  • 43. Xiaohong Yao, Xiangyu Zhang, Haibo Wu, Linhai Tian, Yong Ma, Bin Tang, Microstructure and antibacterial properties of Cu-doped TiO2 coating on titanium by micro-arc oxidation. Appl. Surf. Sci., 292, 944–947, 2014.
  • 44. Hempel F., Finke B., Zietz C., Bader R., Weltmann K.-D., Polak M., Antimicrobial surface modification of titanium substrates by means of plasma immersion ion implantation and deposition of copper. Surf. Coat. Technol., 256, 52-58, 2014.
  • 45. Stranak V., Wulff H., Ksirova P., Zietz C., Drache S., Cada M., Hubicka Z., Bader R., Tichy M., Helm C.A., Hippler R., Ionized vapor deposition of antimicrobial Ti-Cu films with controlled copper release. Thin Solid Films, 550, 389-394, 2014.
  • 46. Kredl J., Drache S., Quade A., Polak M., Müller S., Peglow S., Hippler R., Kolb J.F., DC Operated Air Plasma Jet for Antimicrobial Copper Coatings on Temperature Labile Surfaces. IEEE Trans. Plasma Sci., 42, 2756-2757, 2014.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-31f016c6-5a89-458a-ac2d-4663775f6d39
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.