Narzędzia help

Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
first last
cannonical link button


Machine Dynamics Research

Tytuł artykułu

Effect of Magnet-Coil Configuration on Energy Recovery from an Electromagnetic Harvester

Autorzy Kecik, Krzysztof  Pawlak, Przemyslaw 
Treść / Zawartość
Warianty tytułu
Języki publikacji EN
EN This paper presents a numerical and experimental analysis of a magnetic levitation (maglev) energy harvester. The motion of a magnet in a coil causes electromagnetic induction and energy harvesting. A new model of coupling electrical and mechanical systems depending on the coil position is proposed. The obtained results show that the magnet-coil configuration strongly influences the energy harvesting level. The best position of a magnet oscillation is near the coil’s end. Moreover, the foldover effect can be amplified.
Słowa kluczowe
EN energy harvesting   magnetic induction   levitation   electromechanical coupling   coil configuration  
Wydawca Oficyna Wydawnicza Politechniki Warszawskiej
Czasopismo Machine Dynamics Research
Rocznik 2018
Tom Vol. 42, No. 2
Strony 35--43
Opis fizyczny Bibliogr. 10 poz.,rys., tab., wykr.
autor Kecik, Krzysztof
autor Pawlak, Przemyslaw
  • Lublin University of Technology
1. Kecik, K. (2018). Assessment of energy harvesting and vibration mitigation of a pendulum dynamic absorber. Mechanical Systems and Signal Processing, 106: 198–209.
2. Kecik, K., Brzeski, P., and Perlikowski, P. (2017a). Non-linear dynamics and optimization of a harvester–absorber system. International Journal of Structural Stability and Dynamics, 17 (05): 1–15.
3. Kecik, K., Mitura, A., Lenci, S., and Warminski, J. (2017b). Energy harvesting from a magnetic levitation system. International Journal of Non-Linear Mechanics, 94: 200–206.
4. Kecik, K., Mitura, A., Warminski, J., and Lenci, S. (2018). Foldover effect and energy output from a nonlinear pseudo-maglev harvester. AIP Conference Proceeding.
5. Mann, B. and Sims, N. (2010). On the performance and resonant frequency of electromagnetic induction energy harvesters. Journal of Sound and Vibration, 329 (9): 1348–1361.
6. Olaru, R., Gherca, R., and Petrescu, C. (2014). Analysis and design of a vibration energy harvester using permanent magnets, revue roumaine de sciences. Techniques Serie Electrotechnique et Energetique, pages 131–140.
7. Puccinelli, D. and Haenggi, M. (2005). Wireless sensor networks: applications and challenges of ubiquitous sensing. IEEE Circuits and Systems Magazine, 5 (3): 19–31.
8. Renno, J. M., Daqaq, M. F., and Inman, D. J. (2009). On the optimal energy harvesting from a vibration source. Journal of Sound and Vibration, 320 (1-2): 386–405.
9. Sodano, H. A., Inman, D. J., and Park, G. (2004). A review of power harvesting from vibration using piezoelectric materials. The Shock and Vibration Digest, 36 (3): 197–205.
10. Stephen, N. (2006). On energy harvesting from ambient vibration. Journal of Sound and Vibration, 293 (1-2): 409–425.
Kolekcja BazTech
Identyfikator YADDA bwmeta1.element.baztech-30274d01-125c-4501-84d0-f793ed0326bc