Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Rock physics modelling for determination of effective elastic properties of the lower Paleozoic shale formation, North Poland

Warianty tytułu
Języki publikacji
This paper presents an application of rock physics templates constructed with the use of the granular effective medium theory and the shale model to estimate the elastic properties of the Silurian and Ordovician shale formations from the Baltic Basic, Poland. The author uses available logging data from three nearby wells and their petrophysical interpretation to distinguish various lithologies and to determine average matrix mineral composition of each lithology group, essential in further rock physics modelling. Anisotropy estimation and investigation of the relation between various petrophysical parameters precede the rock physics modelling. The logging data cross-plotted in Vp/Vs/ ratio–acoustic impedance domain reveals distinct compaction trend for shales, which is not followed by shales with increased organic matter and calcareous deposits. These two lithology groups present own trends, which are related to increasing kerogen and carbonate minerals contents, respectively. The trends are the subject of rock physics modelling. Granular effective medium rock physics templates are constructed for each lithology group. The rock physics analyses reveal that the elastic properties of strongly compacted shales, including shales with organic matter, might be successfully described by the lower modified Hashin–Shtrikman bound, which is useful in compaction trend modelling. Marly deposits can be modelled in a similar way to shales. The upper modified Hashin– Shtrikman bound provides a better template for carbonates as it models the cementation process. The shale model provides independent rock physics template for shales. Comparison of these two approaches shows that the granular effective medium method better describes the elastic properties of the analysed formations. The paper includes also the proposition of the final rock physics template constructed for the Silurian and the Ordovician formation from the Baltic Basin that can contribute to a better understanding of the elastic properties of the lower Paleozoic shale plays in Poland.
Opis fizyczny
Bibliogr. 80 poz.
  • Department of Geophysics, Faculty of Geology, Geophysics and Environmental Protection, AGH University of Science and Technology, al. Mickiewicza 30, 30‑059 Kraków, Poland,
  • 1. Alford RM (1986) Shear data in the presence of azimuthal anisotropy. In: SEG technical program expanded abstracts 1986, pp 476–479.
  • 2. Allo F (2019) Consolidating rock-physics classics: a practical take on granular effective medium models. Lead Edge 38(5):334–340.
  • 3. Avseth P (2014) Geological processes and rock physics signature of upper jurassic organic-rich shales, Norwegian shelf. In: 76th EAGE conference and exhibition—workshops, extended abstracts, pp WS12–A05.
  • 4. Avseth P, Carcione JM (2015) Rock-physics analysis of clay-rich source rocks on the Norwegian shelf. Lead Edge 34(11):1340–1342,1344–1348.
  • 5. Avseth P, Mavko G, Dvorkin J, Mukerji T (2001) Rock physics and seismic properties of sands and shales as a function of burial depth. In: SEG technical program expanded abstracts 2001, pp 1780–1783.
  • 6. Avseth P, Jørstad A, van Wijngaarden A, Mavko G (2009) Rock physics estimation of cement volume, sorting, and net-to-gross in North Sea sandstones. Lead Edge 28(1):98–108.
  • 7. Avseth P, Mukerji T, Mavko G (2010) Quantitative seismic interpretation: Applying rock physics tools to reduce interpretation risk. Cambridge University Press, New York
  • 8. Ba J, Cao H, Carcione J, Tang G, Yan XF, Sun WT, Nie JX (2013) Multiscale rock physics templates for gas detection in carbonate reservoir. J Appl Geophys 93:77–82.
  • 9. Bała M (2007) Effects of shale content, porosity and water- and gas-saturation in pores on elastic parameters of reservoir rocks based on theoretical models of porous media and well-logging data (in Polish with English summary). Prz Geol 55(1):46–55
  • 10. Bała M (2015) Determination of elastic parameters of organic shales specified on the basis of theoretical relationships of Biot–Gassmann and Kuster–Toksöz (in Polish with English summary). Nafta-Gaz 12:1005–1016.
  • 11. Bała M (2017) Characteristics of elastic parameters determined on the basis of well logging measurements and theoretical modeling, in selected formations in boreholes in the Baltic Basin and the Baltic offshore (in Polish with English summary). Nafta-Gaz 8:558–570.
  • 12. Bała M, Cichy A, Wasilewska-Błaszczyk M (2019) Attempts to calculate the pseudo-anisotropy of elastic parameters of shale gas formations based on well logging data and their geostatistical analysis. Geol Geophys Environ 45(1):5–20.
  • 13. Berryman JG (1995) Mixture theories for rock properties. In: Ahrens TJ (ed) Rock physics and phase relations: a handbook of physical constants. Am Geophys Un, Washington, DC, pp 205–228
  • 14. Bredesen K, Avseth P, Johansen TA, Olstad R (2019) Rock physics modelling based on depositional and burial history of Barents Sea sandstones. Geophys Prospect 67(1):825–842.
  • 15. Brie A, Endo T, Codazzi D, Esmersoy C, Hsu K, Denoo S, Mueller MC, Plona T, Shenoy R, Sinha B (1998) The new directions in sonic logging. Oilfield Rev 10(1):40–55
  • 16. Brown RJS, Korringa J (1979) On the dependence of the elastic properties of a porous rock on the compressibility of the pore fluid. Geophysics 40(4):608–616.
  • 17. Carcione JM, Avseth P (2015) Rock-physics templates for clay-rich source rocks. Geophysics 80(5):D481–D500.
  • 18. Carcione JM, Helle HB, Avseth P (2011) Source-rock seismic-velocity models: Gassmann versus Backus. Geophysics 76(5):N37–N45
  • 19. Carmichael RS (1989) Practical handbook of physical properties of rocks and minerals. CRC Press, Boca Raton, FL
  • 20. Chi XG, Han DH (2009) Lithology and fluid differentiation using a rock physics template. Lead Edge 28(1):60–65.
  • 21. Cyz M, Mulińska M, Pachytel R, Malinowski M (2018) Brittleness prediction for the lower Paleozoic shales in Northern Poland. Interpretation 6(3):SH13–SH23.
  • 22. Dræge A (2019) Geo-consistent depth trends: honoring geology in siliciclastic rock-physics depth trends. Lead Edge 38(5):379–384.
  • 23. Esmersoy C, Koster K, Williams M, Boyd A, Kane M (1994) Dipole shear anisotropy logging. In: SEG technical program expanded abstracts 1994, pp 1139–1142.
  • 24. Feldman-Olszewska A, Roszkowska-Remin J (2016) Lithofacies of the Ordovician and Silurian formations prospective for shale gas/oil in the Baltic and Podlasie-Lublin areas (in Polish with English summary). Prz Geol 64(12):968–975
  • 25. Gajek W, Malinowski M, Verdon JP (2018) Results of downhole microseismic monitoring at a pilot hydraulic fracturing site in Poland—Part 2: S-wave splitting analysis. Interpretation 6(3):SH49–SH58.
  • 26. Gegenhuber N, Pupos J (2015) Rock physics template from laboratory data for carbonates. J Appl Geophys 114:12–18.
  • 27. CGG (2015) Hampson-Russell Software. Version HRS10.3: Interactive Help. CGG, Calgary, Alberta
  • 28. Hertz H (1882) Über die Berührung fester elastischer Körper. Journal für die reine und angewandte Mathematik 92(1):156–171
  • 29. Jarzyna JA, Wawrzyniak-Guz K (ed) et al (2017b) Adaptation of the Polish conditions of the methodologies of the sweet spots determination on the basis of correlation of well logging with drilled core samples: methodology to determine sweet spots based on geochemical, petrophysical and geomechanical properties in connection with correlation of laboratory test with well logs and generation model 3D (in Polish). Drukarnia Goldruk Wojciech Gołakowski, Kraków
  • 30. Jarzyna JA, Bała M, Krakowska PI, Puskarczyk E, Strzępowicz A, Wawrzyniak-Guz K, Więcław D, Ziętek J (2017a) Shale gas in Poland. In: Al-Megren HA, Altamimi RH (ed) Advances in natural gas emerging technologies. IntechOpen,
  • 31. Jarzyna JA, Krakowska PI, Puskarczyk E, Wawrzyniak-Guz K, Zych M (2018) Petrophysical characteristics of the shale gas formations in the Baltic Basin, Northern Poland. In: Kovacs F, Takasc G, Fkoanyi L (ed) Geoscience and engineering: a publication of the University of Miskolc. 6(9):9–18
  • 32. Johnston JE, Christensen NI (1995) Seismic anisotropy of shales. J Geophys Res-Sol Ea 100(B4):5991–6003.
  • 33. Kotarba MJ, Lewan MD, Więcław D (2014) Shale gas and oil potential of Lower Palaeozoic strata in the Polish Baltic Basin by hydrous pyrolysis. In: 4th EAGE shale workshop. Shales: what do they have in common? Mo P02.
  • 34. Krakowska PI, Puskarczyk E (2015) Tight reservoir properties derived by nuclear magnetic resonance, mercury porosimetry and computed microtomography laboratory techniques. Case study of palaeozoic clastic rocks. Acta Geophys 63(3):789–814.
  • 35. Kuster GT, Toksöz MN (1974) Velocity and attenuation of seismic waves in two-phase media: Part I. Theoretical formulations. Geophysics 39(5):587–606.
  • 36. Kwietniak A, Cichostępski K, Pietsch K (2018) Resolution enhancement with relative amplitude preservation for unconventional targets. Interpretation 6(3):SH59–SH71.
  • 37. Li Y (2006) An empirical method for estimation of anisotropic parameters in clastic rocks. Lead Edge 25(6):706–711.
  • 38. Li Y, Guo ZQ, Liu C, Li XY, Wang G (2015) A rock physics model for the characterization of organic-rich shale from elastic properties. Pet Sci 12(2):264–272.
  • 39. Liana B, Papiernik B (2017) Natural and drilling induced factors influencing the brittleness estimation based on sonic logs. SGEM Conf Proc 17(14):741–748
  • 40. Malinowski M, Jarosinski M, Krzywiec P, Pasternacki A, Wawrzyniak-Guz K (2018) Introduction to special section: characterization of potential lower Paleozoic shale resource play in Poland. Interpretation 6(3):SH1–SH2.
  • 41. Mavko G, Mukerji T, Dvorkin J (2011) Rock physics handbook. Tools for seismic analysis of porous media, 2nd edn. Cambridge University Press, New York
  • 42. Mindlin RD (1949) Compliance of elastic bodies in contact. J Appl Mech 16:259–268
  • 43. Modliński Z, Szymański B (1997) The ordovician lithostratigraphy of the peribaitic depression (NE Poland). Geol Q 41(3):273–288
  • 44. Modliński Z, Szymański B, Teller L (2006) The silurian lithostratigraphy of the polish part of the peri-baltic depression (N Poland) (in Polish). Prz Geol 54(9):787–796
  • 45. Mur A, Vernik L (2019) Testing popular rock-physics models. Lead Edge 38(5):350–357.
  • 46. Narongsirikul S, Haque Mondol N, Jahren J (2019) Acoustic and petrophysical properties of mechanically compacted overconsolidated sands: part 2—rock physics modelling and application. Geophys Prospect 67(1):114–127.
  • 47. Nur A (1992) Critical porosity and the seismic velocities in rocks. EOS Trans Am Geophys Un 73:43–66
  • 48. Nye JF (1985) Physical Properties of Crystals: Their Representation by Tensor and Matrices. Oxford University Press, Oxford
  • 49. Ødegaard E, Avseth P (2004) Well log and seismic data analysis using rock physics templates. First Break 22(10):37–43.
  • 50. Passey QR, Creaney S, Kulla JB, Moretti FJ, Stroud JD (1990) A practical model for organic richness from porosity and resistivity logs. AAPG Bull 74(12):1777–1794
  • 51. Podhalańska T (2016) Block of articles - Unconventional hydrocarbon systems of the Baltic–Podlasie–Lublin basins and the carboniferous basin of SW Poland; prospects for the occurrence of unconventional hydrocarbon deposits–preliminary word (in Polish with English summary). Prz Geol 64(12):951–952
  • 52. Podhalańska T, Waksmundzka MI, Becker A, Roszkowska-Remin J (2016) Investigation of the prospective areas and stratigraphic horizons of the unconventional hydrocarbon resources in Poland—new results and future research directions (in Polish with English summary). Prz Geol 64(12):953–962
  • 53. Poprawa P (2010) Shale gas potential of the lower Paleozoic complex in the Baltic and Lublin–Podlasie basins (Poland) (in Polish with English summary). Prz Geol 58(3):226–249
  • 54. Porębski SJ, Prugar W, Zacharski J (2013) Silurian shales of the East European platform in Poland—some exploration problems. Prz Geol 61(8):468–477
  • 55. Prasad M, Pal-Bathija A, Johnston M, Rydzy M, Batzle M (2009) Rock physics of the unconventional. Lead Edge 28(1):34–38.
  • 56. Reuss A (1929) Berechnung der Fliessgrenze von Mischkristallen auf Grund der Plastizitätsbedingung für Einkristalle. Z Angew Match Mech 9(1):49–58.
  • 57. Sayers CM (1994) The elastic anisotropy of shales. J Geophys Res-Sol Ea 99(B1):767–774.
  • 58. Sayers CM (2005) Seismic anisotropy of shales. Geophys Prospect 53(5):667–676.
  • 59. Sayers CM (2013) The effect of kerogen on the elastic anisotropy of organic-rich shales. Geophysics 78(2):D65–D74.
  • 60. Sayers CM, Dasgupta S (2019) A predictive anisotropic rock-physics model for estimating elastic rock properties of unconventional shale reservoirs. Lead Edge 38(5):358–365.
  • 61. Sayers CM, den Boer LD (2016) The elastic anisotropy of clay minerals. Geophysics 81(5):C193–C203.
  • 62. Schön J (1996) Physical properties of rocks: fundamentals and principles of petrophysics. Elsevier, Oxford
  • 63. Sengupta M, Katahara K, Smith N, Kittridge M, Blangy JP (2015) Modeling anisotropic elasticity in an unconventional reservoir. Lead Edge 34(11):1332–1338.
  • 64. Sikorska-Jaworowska M, Kuberska M, Kozłowska A (2016) Petrography and mineralogy of the lower Paleozoic shales from East European Craton and carboniferous sandstones from the basement of the Fore-Sudetic Homocline (in Polish with English summary). Prz Geol 64(12):963–967
  • 65. Stadtmüller M, Lis-Śledziona A, Słota-Valim M (2018) Petrophysical and geomechanical analysis of the Lower Paleozoic shale formation, North Poland. Interpretation 6(3):SH91–SH106.
  • 66. Thomsen L (1986) Weak elastic anisotropy. Geophysics 51(10):1954–1966.
  • 67. Thomsen L (2010) On the fluid dependence of rock compressibility: Biot‐Gassmann refined. In: SEG technical program expanded abstracts 2010, pp 2447–2451.
  • 68. Thomsen L (2012) On the use of isotropic parameters λ, E, υ to understand anisotropic shale behaviour. In: International geophysical conference and oil and gas exhibition, Istanbul, Turkey, pp 1–4.
  • 69. Tucovic N, Gegenhuber N (2017) Well-log based rock physics template of the Vienna Basin and the underlaying Calcareous Alps. Acta Geophys 65(3):441–451.
  • 70. Vernik L (1993) Microcrack-induced versus intrinsic elastic anisotropy in mature HC-source shales. Geophysics 58(11):1703–1706.
  • 71. Vernik L (2016) Seismic Petrophysics in Quantitative Interpretation. SEG, Tulsa
  • 72. Vernik L, Kachanov M (2010) Modeling elastic properties of siliciclastic rocks. Geophysics 75(6):E171–E182.
  • 73. Vernik L, Liu X (1997) Velocity anisotropy in shales: a petrophysical study. Geophysics 62(2):521–532.
  • 74. Vernik L, Milovac J (2010) Rock physics of organic shales. Lead Edge 30(3):318–323.
  • 75. Vernik L, Nur A (1992) Ultrasonic velocity and anisotropy of hydrocarbon source rocks. Geophysics 57(5):727–735.
  • 76. Voigt W (1910) Lehrbuch der Kristallphysik. Teubner, Leipzig
  • 77. Wang Z (2002) Seismic anisotropy in sedimentary rocks, part 2: laboratory data. Geophysics 67(5):1423–1440.
  • 78. Wawrzyniak-Guz K (2018) Instantaneous attributes applied to full waveform sonic log and seismic data in integration of elastic properties of shale gas formations in Poland. E3S Web Conf 35:03007.
  • 79. Xu S, Payne MA (2009) Modeling elastic properties in carbonate rocks. Lead Edge 29(1):66–74.
  • 80. Zhao L, Qin X, Han D, Geng J, Yang Z, Cao H (2016) Rock-physics modeling for the elastic properties of organic shale at different maturity stages. Geophysics 81(5):D527–D541.
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.