Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Nonlinear system identification of a MIMO quadruple tanks system using NARX model

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Nieliniowy system identyfikacji systemu MIMO przy wykorzystaniu modelu NARX
Języki publikacji
This paper has two main objectives. First, it gives an overview on the identification of MIMO nonlinear systems using NARX models. It covers the classical approach of the FROLS method, as well as the SEMP method. The second is to present some new useful results in model structure selection for NARX polynomial models applied to MIMO systems. It shows how to make a representation of MIMO systems from NARX polynomial models and the application of classical methods to identify these models. The study case used is a real didactic quadruple tank system manufactured by Quanser.
Artykuł ma dwa cele. Po pierwsze przedstawia przegląd metod identyfikacji nieliniowych systemów MIMO przy użyciu modelu NARX. Przedstawiono klasyczną metodę FROLS a także metodę SEMP. Po drugie przedstawiono użyteczne wyniki selekcji struktury wielomianowego modelu NARX zastosowanego do systemów MIMO.
Opis fizyczny
Bibliogr. 38 poz., rys., tab.
  • Computer Institute, Federal University of Alagoas Av. Lourival de Melo Mota, Bloco 12, Tabuleiro do Martins 57072-970, Maceió, AL, Brazil
  • Federal University of Rio Grande do Norte
  • Federal University of Santa Catarina
  • Computer Institute, Federal University of Alagoas Av. Lourival de Melo Mota, Bloco 12, Tabuleiro do Martins 57072-970, Maceió, AL, Brazil
  • Federal University of Rio Grande do Norte
  • [1] L. Ljung, System identification: theory for the user. Prenticehall, 1987.
  • [2] R. Pintelon and J. Schoukens, System Identification: A Frequency Domain Approach. Wiley, 2004.
  • [3] I. Leontaritis and S. A. Billings, “Input-output parametric models for non-linear systems part i: deterministic non-linear systems,” International journal of control, vol. 41, no. 2, pp. 303–328, 1985.
  • [4] W.-X. Zhao and H.-F. Chen, “Identification of wiener, hammerstein, and narx systems as markov chains with improved estimates for their nonlinearities,” Systems & Control Letters, vol. 61, pp. 1175–1186, 12 2012.
  • [5] L. Piroddi and W. Spinelli, “An identification algorithm for polynomial narx models based on simulation error minimization,” International Journal of Control, vol. 76, no. 17, pp. 1767–1781, 2003.
  • [6] I. Lind and L. Ljung, “Regressor and structure selection in narx models using a structured anova approach,” Automatica, vol. 44, no. 2, pp. 383–395, 2008.
  • [7] T. Orlowska-Kowalska and C. T. Kowalski, “Neural network application for flux and speed estimation in the sensorless induction motor drive,” in ISIE ’97 Proceeding of the IEEE International Symposium on Industrial Electronics, pp. 1253– 1258 vol.3, July 1997.
  • [8] A. Ghadirian and M. Zekri, “Mimo nonlinear dynamic systems identification using fully recurrent wavelet neural network,” in The 2nd International Conference on Control, Instrumentation and Automation, pp. 1113–1118, Dec 2011.
  • [9] J. S. R. Jang, “Anfis: adaptive-network-based fuzzy inference system,” IEEE Transactions on Systems, Man, and Cybernetics, vol. 23, pp. 665–685, May 1993.
  • [10] N. Mathur, I. Glesk, and A. Buis, “Comparison of adaptive neuro-fuzzy inference system (anfis) and gaussian processes for machine learning (gpml) algorithms for the prediction of skin temperature in lower limb prostheses,” Medical Engineering & Physics, vol. 38, no. 10, pp. 1083 – 1089, 2016.
  • [11] S. A. Billings, M. J. Korenberg, and S. Chen, “Identification of non-linear output-affine systems using an orthogonal leastsquares algorithm,” International Journal of Systems Science, vol. 19, pp. 1559–1568, Apr 1988.
  • [12] S. A. Billings, S. Chen, and M. J. Korenberg, “Identification of mimo non-linear systems using a forward-regression orthogonal estimator,” International Journal of Control, vol. 49, no. 6, pp. 2157–2189, 1989.
  • [13] R. Isermann and M. Münchhof, Identification of Dynamic Systems: An Introduction with Applications. Advanced Textbooks in Control and Signal Processing Series, Springer Berlin Heidelberg, 2010.
  • [14] W. Jakowluk, “Design of an optimal excitation signal for identification of inertial systems in time domain,” PrzeglÄ…d Elektrotechniczny, vol. R. 85, nr 6, pp. 125–129, 2009.
  • [15] A. Falsone, L. Piroddi, and M. Prandini, “A randomized algorithm for nonlinear model structure selection,” Automatica, vol. 60, pp. 227 – 238, 2015.
  • [16] F. Bianchi, A. Falsone, M. Prandini, and L. Piroddi, “A randomised approach for narx model identification based on a multivariate bernoulli distribution,” International Journal of Systems Science, vol. 48, no. 6, pp. 1203–1216, 2017.
  • [17] M. Avellina, A. Brankovic, and L. Piroddi, “Distributed randomized model structure selection for narx models,” International Journal of Adaptive Control and Signal Processing, vol. 31, no. 12, pp. 1853–1870, 2017. [18] M. KORENBERG, S. Billings, Y. Liu, and P. McIlroy, “Orthogonal parameter estimation algorithm for non-linear stochastic systems,” International Journal of Control, vol. 48, no. 1, pp. 193–210, 1988.
  • [19] S. Chen and S. A. Billings, “Representations of non-linear systems: the narmax model,” International Journal of Control, vol. 49, no. 3, pp. 1013–1032, 1989.
  • [20] S. A. Billings, Nonlinear system identification: NARMAX methods in the time, frequency, and spatio-temporal domains. John Wiley & Sons, 2013.
  • [21] N. Chiras, C. Evans, and D. Rees, “Nonlinear gas turbine modeling using narmax structures,” IEEE Transactions on Instrumentation and Measurement, vol. 50, no. 4, pp. 893–898, 2001.
  • [22] E. H. Fung, Y. Wong, H. Ho, and M. P. Mignolet, “Modelling and prediction of machining errors using armax and narmax structures,” Applied Mathematical Modelling, vol. 27, no. 8, pp. 611–627, 2003.
  • [23] S. K. Pradhan and B. Subudhi, “Narmax modeling of a two-link flexible robot,” in 2011 Annual IEEE India Conference, pp. 1–5, IEEE, 2011.
  • [24] R. Salat, M. Awtoniuk, and K. KORPYSZ, “Black-box system identification by means of support vector regression and imperialist competitive algorithm,” Przeglkad Elektrotechniczny, vol. 89, pp. 223–226, 09 2013.
  • [25] Y. Cheng, L. Wang, and J. Hu, “A two-step method for nonlinear polynomial model identification based on evolutionary optimization,” in 2009 World Congress on Nature Biologically Inspired Computing (NaBIC), pp. 613–618, Dec 2009.
  • [26] L. A. Aguirre and S. Billings, “Dynamical effects of overparametrization in nonlinear models,” Physica D: Nonlinear Phenomena, vol. 80, no. 1, pp. 26 – 40, 1995.
  • [27] L. A. Aguirre and C. R. F. Jacome, “Cluster analysis of narmax models for signal-dependent systems,” IEE Proceedings - Control Theory and Applications, vol. 145, pp. 409–414, Jul 1998.
  • [28] W. Luo and S. Billings, “Adaptive model selection and estimation for nonlinear systems using a sliding data window,” Signal Processing, vol. 46, no. 2, pp. 179 – 202, 1995.
  • [29] L. A. Aguirre, U. S. Freitas, C. Letellier, and J. Maquet, “Structure-selection techniques applied to continuous-time nonlinear models,” Physica D: Nonlinear Phenomena, vol. 158, no. 1, pp. 1 – 18, 2001.
  • [30] M. Farina and L. Piroddi, “An iterative algorithm for simulation error based identification of polynomial input–output models using multi-step prediction,” International Journal of Control, vol. 83, no. 7, pp. 1442–1456, 2010.
  • [31] M. Hirch and L. del Re, “Iterative identification of polynomial narx models for complex multi-input systems,” IFAC Proceedings Volumes, vol. 43, no. 14, pp. 445 – 450, 2010. 8th IFAC Symposium on Nonlinear Control Systems.
  • [32] M. Bonin, V. Seghezza, and L. Piroddi, “Lasso-enhanced simulation error minimization method for narx model selection,” in Proceedings of the 2010 American Control Conference, pp. 4522–4527, June 2010.
  • [33] S. A. M. Martins, E. G. Nepomuceno, and M. F. S. Barroso, “Improved structure detection for polynomial narx models using a multiobjective error reduction ratio,” Journal of Control, Automation and Electrical Systems, vol. 24, pp. 764–772, Dec 2013.
  • [34] A. M. Barbosa, R. H. C. Takahashi, and L. A. Aguirre, “Equivalence of non-linear model structures based on pareto uncertainty,” IET Control Theory Applications, vol. 9, no. 16, pp. 2423–2429, 2015.
  • [35] W. Fuchs, H. Binder, G. Mavrias, and R. Braun, “Anaerobic treatment of wastewater with high organic content using a stirred tank reactor coupled with a membrane filtration unit,” Water Research, vol. 37, no. 4, pp. 902–908, 2003.
  • [36] A. Numsomran, V. Tipsuwanporn, and K. Tirasesth, “Modeling of the modified quadruple-tank process,” in 2008 SICE Annual Conference, pp. 818–823, IEEE, 2008.
  • [37] S. Xie, Y. Xie, W. Gui, and C. Yang, “Weighted-coupling cstr modeling and model predictive control with parameter adaptive correction for the goethite process,” Journal of Process Control, vol. 68, pp. 254–267, 2018.
  • [38] A. Maxim, C. Ionescu, and R. De Keyser, “Modelling and identification of a coupled sextuple water tank system,” in Automation, Quality and Testing, Robotics (AQTR), 2016 IEEE International Conference on, pp. 1–6, IEEE, 2016.
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.