Narzędzia help

Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
first last
cannonical link button


Environment Protection Engineering

Tytuł artykułu

Investigation on co-pyrolysis of sewage sludge with coal

Autorzy Tan, Z.-X.  Ai, P.  Li, Y.-M.  Ji, X.-Y.  Feng, W. 
Treść / Zawartość
Warianty tytułu
Języki publikacji EN
EN Co-pyrolysis characteristics of sludge with coal and sludge briquetted with coal were studied by the TG-FTIR method. From TG data, weight loss of sludge briquetted was higher than that of sludge and sludge and coal which means that thermal reaction effect of sludge briquetted is better than those of other two materials. Gas products of pyrolysis were CO, CO2, H2O, alcohol, ketone, acid, hydrocarbon, amine and azine from the FTIR analysis. At last, evolving patterns of the pyrolyses and the yields of their gas products have been recorded, providing extremely important data on the mechanism of the process.
Słowa kluczowe
PL węgiel   dwutlenek węgla   osady ściekowe   FTIR   szlam węglowy   reakcje termiczne   kopiroliza   piroliza osadów ściekowych  
EN coal   carbon dioxide   sewage sludge   co-pyrolysis   FTIR analysis   coal sludge   thermal reactions  
Wydawca Oficyna Wydawnicza Politechniki Wrocławskiej
Czasopismo Environment Protection Engineering
Rocznik 2014
Tom Vol. 40, nr 1
Strony 117--126
Opis fizyczny Bibliogr. 19 poz., tab., rys.
autor Tan, Z.-X.
  • College of Resources and Environment, Huazhong Agricultural University, 430070, Wuhan, P.R. China,
autor Ai, P.
  • College of Engineering, Huazhong Agricultural University, 430070, Wuhan, P.R. China
autor Li, Y.-M.
  • College of Resources and Environment, China Agricultural University, 430070, Beijing, P.R. China
autor Ji, X.-Y.
  • Division of Energy Science, Lulea University of Technology, 97187, Lulea, Sweden
autor Feng, W.
  • Monitoring Center of Soil and Water Conservation, Ministry of Water Resources, 100053, Beijing, P.R. China
[1] LIN H., MA X.Q., Simulation of co-incineration of sewage sludge with municipal solid waste in a grate furnace incinerator, Waste Manage., 2012, 32, 561.
[2] MENG M., HU H.Q., ZHANG Q.M., LI X., WU B., Pyrolysis behaviors of Tumuji oil sand by thermogravimetry (TG) and in a Fixed Bed Reactor, Energ. Fuels, 2007, 21, 2245.
[3] SLOVAK V., SUSAKB P., Pitch pyrolysis kinetics from single TG curve, J. Anal. Appl. Pyrolysis, 2004, 72, 249.
[4] OSVALDA S., Kinetics of pyrolysis combustion and gasification of three biomass fuels, Fuel Process. Technol., 2007, 88, 87.
[5] FECHINE G.J.M., CHRISTENSEN P.A., EGERTON T.A., WHITE J.R., Evaluation of poly (ethylene terephthalate) photostabilisation using FTIR spectrometry of evolved carbon dioxide, Polym. Degrad. Stabil., 2009, 94, 24.
[6] BERNAZZANI P., PEYYAVULAA V.K., AGARWALA S., TATIKONDAA R.K., Evaluation of the phase com- position of amylose by FTIR and isothermal immersion heats, Polymer, 2008, 49, 4150.
[7] KANOKKANTAPONG V., MARHABA T.F., PANYAPINYOPHOL B., PAVASANT P., FTIR evaluation of functional groups involved in the formation of haloacetic acids during the chlorination of raw water, J. Hazard. Mater., 2006, B136, 188.
[8] BECIDAN M., SKREIBERG J.E.H., Products distribution and gas release in pyrolysis of thermally thick biomass residues samples, J. Anal. Appl. Pyrol., 2007, 78, 207.
[9] LI S., LYONS-HART J., BANYASZ J., SHAFER K., Real-time evolved gas analysis by FTIR method: an experimental study of cellulose pyrolysis, Fuel, 2001, 80, 1809.
[10] ZHU H.M., YAN J.H., JIANG X.G., LAI Y.E., CEN K.F., Study on pyrolysis of typical medical waste materials by using TG-FTIR analysis, J. Hazard. Mater., 2008, 153, 670.
[11] JONG W.D., NOLA G.D., VENNEKER B.C.H., SPLIETHOFF H., TG-FTIR pyrolysis of coal and secondary biomass fuels: Determination of pyrolysis kinetic parameters for main species and NOx precursors, Fuel, 2007, 86, 2367.
[12] FANG M.X., SHEN D.K., LI Y.X., YU C.J., LUO Z.Y., CEN K.F., Kinetic study on pyrolysis and combustion of wood under different oxygen concentrations by using TG-FTIR analysis, J. Anal. Appl. Pyrolysis, 2006, 77, 22.
[13] GABOR V., PIROSKA S., FERENC T., TG, TG-MS and FTIR characterization of high-yield biomass charcoals, Energ. Fuels, 1998, 12, 969.
[14] MACPHEE J.A., CHARLAND J.P., GIROUX L., Application of TG-FTIR to the determination of organic oxygen and its speciation in the argonne premium coal samples, Fuel Process. Technol., 2006, 87, 335.
[15] YANG J.B., CAI N.S., A TG-FTIR study on catalytic pyrolysis of coal, J. Fuel Chem. Technol., 2006, 34, 650.
[16] GIROUX L., CHARLAND J.P., MACPHEE J.A., Application of thermogravimetric fourier transform infrared spectroscopy (TG-FTIR) to the analysis of oxygen functional groups in coal, Energ. Fuels, 2006, 20, 1988.
[17] HERRERA M., WILHELM M., MATUSCHEK G., Thermoanalytical and pyrolysis studies of nitrogen containing polymers, J. Anal. Appl. Pyrol., 2001, 58/59, 173.
[18] FERNANDEZ-BERRIDI M.J., GONZALEZ N., MUGICA A., Pyrolysis-FTIR and TGA techniques as tools in the characterization of blends of natural rubber and SBR, Thermochim. Acta, 2006, 444, 65.
[19] WOJTOWICZ M.A., BASSILAKIS R., SMITH W.W.L., Modelling the evolution of volatile species during tobacco pyrolysis, J. Anal. Appl. Pyrol., 2003, 66, 235
Kolekcja BazTech
Identyfikator YADDA bwmeta1.element.baztech-2aeef227-ab39-43e7-8a24-a7f713eac5f7
DOI 10.5277/epe140109