Narzędzia help

Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
first previous next last
cannonical link button

http://yadda.icm.edu.pl:80/baztech/element/bwmeta1.element.baztech-2a098eff-b50e-4dbb-9fe5-df8a63c42c22

Czasopismo

Biocybernetics and Biomedical Engineering

Tytuł artykułu

Pure intrusion of a mandibular canine with segmented arch in lingual orthodontics: A numerical study with 3-dimensional finite element analysis

Autorzy Thote, A. M.  Sharma, K.  Uddanwadiker, R. V.  Shrivastava, S. 
Treść / Zawartość http://www.ibib.waw.pl/pl/wydawnictwa/biocybernetics-and-biomedical-enginering-bbe/bbe-tomy http://www.journals.elsevier.com/biocybernetics-and-biomedical-engineering/
Warianty tytułu
Języki publikacji EN
Abstrakty
EN Objective: Approximately 50% patients with a deep bite possess anatomically extruded mandibular canines. The objective of this study was to specify the required toe (θ) of the vertical segment of a cantilever from the distal aspect to achieve pure intrusion of a mandibular canine with a segmented arch in lingual orthodontics. Additionally, the optimum magnitude of the required intrusive force by a cantilever was determined assuming non-linear, hyper-elastic behaviour of periodontal ligament (PDL). Methods: The geometrical model of a mandibular canine tooth was developed and the mathematical equation was devised to evaluate θ (positive value: toe-in, negative value: toe-out) based on certain input parameters. To verify this numerical study by finite element analysis (FEA), total eight different positions of point of force application (Pf) on bracket top (occlusal) surface were considered based on different values of input parameters. Results: The results were displayed in terms of nature of tooth movement and Von-Mises (equivalent) stresses generated in the PDL. Additionally, the optimum magnitude of the required intrusive force within the biological limit of a mandibular canine was determined from FEA considering the strength of PDL and factor of safety. Conclusions: The numerical study was developed to compute the value of required toe angle (θ) of the vertical segment of a cantilever for different morphologies of a mandibular canine as well as different positions of Pf. From FEA, the optimum range of an intrusive force within the biological limit of a mandibular canine was found to be 20–30 g.
Słowa kluczowe
PL ortodoncja   LiO   analiza elementów skończonych  
EN mandibular canine   pure intrusion   LiO   finite element analysis  
Wydawca Nałęcz Institute of Biocybernetics and Biomedical Engineering of the Polish Academy of Sciences
Elsevier
Czasopismo Biocybernetics and Biomedical Engineering
Rocznik 2017
Tom Vol. 37, no. 3
Strony 590--598
Opis fizyczny Bibliogr. 33 poz., rys., tab., wykr.
Twórcy
autor Thote, A. M.
autor Sharma, K.
autor Uddanwadiker, R. V.
  • Department of Mechanical Engineering, Visvesvaraya National Institute of Technology, Nagpur, Maharashtra, India, rashmiu71@gmail.com
autor Shrivastava, S.
Bibliografia
[1] Kim T, Suh J, Kim N, Lee M. Optimum conditions for parallel translation of maxillary anterior teeth under retraction force determined with the finite element method. Am J Orthod Dentofac Orthop 2010;137(5):639–47. http://dx.doi.org/10.1016/j.ajodo.2008.05.016.
[2] Geron S, Romano R, Brosh T. Vertical forces in labial and lingual orthodontics applied on maxillary incisors — a theoretical approach. Angle Orthod 2004;74(2):195–201.
[3] Lombardo L, Stefanoni F, Mollica F, Laura A, Scuzzo G, Siciliani G. Three-dimensional finite-element analysis of a central lower incisor under labial and lingual loads. Prog Orthod 2012;13(2):154–63. http://dx.doi.org/10.1016/j.pio.2011.10.005.
[4] Song JH, Huh H, Park HS. Study on the retraction of anterior teeth for the lingual orthodontics with the three-dimensional finite element method. Trans Korean Soc Mech Eng A 2004;28(8):1237–44.
[5] El-Dawlatly MM, Fayed MMS, Mostafa YA. Deep overbite malocclusion: analysis of the underlying components. Am J Orthod Dentofac Orthop 2016;142(4):473–80. http://dx.doi.org/10.1016/j.ajodo.2012.04.020.
[6] Ricketts RM, Bench RW, Gugino CF, Hilgers JJ, Schulhof RJ. Mechanics sequence for Class II division I cases. In: Ricketts RM, editor. Bioprogresive therapy. Denver, CO: Rocky Mountain Orthodontics; 1979. p. 169–81.
[7] Burstone CR. Deep overbite correction by intrusion. Am J Orthod 1977;72:1–22. http://dx.doi.org/10.1016/0002-9416(77)90121-X.
[8] Ricketts RM, Bench RW, Gugino CF, Hilgers JJ, Schulhof RJ. Mechanics sequence for Class II division II cases. In: Ricketts RM, editor. Bioprogresive therapy. Denver, CO: Rocky Mountain Orthodontics; 1979. p. 111–26.
[9] Marcotte MR. Correcao da sobremordida profunda. In: Marcotte MR, editor. Biomecanica em Orthodontia, vol. a. 2nd ed. São Paulo, Brazil: Santos; 2003. p. 99–116.
[10] Caballero GM, de Carvalho Filho OA, Hargreaves BO, Brito HH, de A, Magalhães PAA, et al. Mandibular canine intrusion with the segmented arch technique: a finite element method study. Am J Orthod Dentofac Orthop 2015;147(6):691–7. http://dx.doi.org/10.1016/j.ajodo.2015.01.022.
[11] Thote AM, Uddanwadiker RV, Sharma K, Shrivastava S. Optimum force system for intrusion and extrusion of maxillary central incisor in labial and lingual orthodontics. Comput Biol Med 2016;69:112–9. http://dx.doi.org/10.1016/j.compbiomed.2015.12.014.
[12] Nelson SJ. Wheeler's dental anatomy; physiology and occlusion. 10th ed. USA: Saunders, Elsevier Health Sciences; 2015. p. 130–6.
[13] Sia SS, Koga Y, Yoshida N. Determining the center of resistance of maxillary anterior teeth subjected to retraction forces in sliding mechanics. Angle Orthod 2007;77(6):999–1003. http://dx.doi.org/10.2319/112206-478.
[14] Toms SR, Eberhardt AW. A nonlinear finite element analysis of the periodontal ligament under orthodontic tooth loading. Am J Orthod Dentofac Orthop 2003;123 (6):657–65.
[15] Pietrzak G, Curnier A, Botsis J, Scherrer S, Wiskott A, Belser U. A nonlinear elastic model of the periodontal ligament and its numerical calibration for the study of tooth mobility. Comput Method Biomech Biomed Eng 2002;5 (2):91–100.
[16] Bergomi M, Cugnoni J, Galli M, Botsis J, Belser UC, Wiskott HWA. Hydro-mechanical coupling in the periodontal ligament: a porohyperelastic finite element model. J Biomech 2011;44:34–8. http://dx.doi.org/10.1016/j.jbiomech.2010.08.019.
[17] Huang H, Tang W, Tan Q, Yan B. Journal of the mechanical behavior of biomedical materials development and parameter identification of a visco-hyperelastic model for the periodontal ligament. J Mech Behav Biomed Mater 2017;68:210–5. http://dx.doi.org/10.1016/j.jmbbm.2017.01.035.
[18] Cattaneo PM, Dalstra M, Melsen B. The finite element method: a tool to study orthodontic tooth movement. J Dent Res 2005;84(5):428–33.
[19] Uddanwadiker RV, Padole PM, Arya H. Effect of variation of root post in different layers of tooth: linear vs nonlinear finite element stress analysis. J Biosci Bioeng 2007;104 (5):363–70. http://dx.doi.org/10.1263/jbb.104.363.
[20] Qian L, Todo M, Morita Y, Matsushita Y, Koyano K. Deformation analysis of the periodontium considering the viscoelasticity of the periodontal ligament. Dent Mater 2009;5:1285–92. http://dx.doi.org/10.1016/j.dental.2009.03.014.
[21] Nomesh M, Rao VV. Hyperelastic Mooney–Rivlin model: determination and physical interpretation of material constants. MIT Int J Mech Eng 2016;6(1):43–6.
[22] Heravi F, Salari S, Tanbakuchi B, Loh S, Amiri M. Effects of crown-root angle on stress distribution in the maxillary central incisors' PDL during application of intrusive and retraction forces: a three-dimensional finite element analysis. Prog Orthod 2013;14(1):1–10.
[23] Komatsu K. Mechanical strength and viscoelastic response of the periodontal ligament in relation to structure. J Dent Biomech 2010;1(1):1–18.
[24] https://en.wikipedia.org/wiki/Factor_of_safety.
[25] Kojima Y, Fukui H. Numerical simulation of canine retraction by sliding mechanics. Am J Orthod Dentofacial Orthop 2005;127(5):542–51.
[26] Kojima Y, Fukui H, Miyajima K. The effects of friction and flexural rigidity of the archwire on canine movement in sliding mechanics: a numerical simulation with a 3- dimensional finite element method. Am J Orthod Dentofacial Orthop 2006;130(3):275.e1–275.e10. http://dx.doi.org/10.1016/j.ajodo.2006.02.030.
[27] Kojima Y, Fukui H. A numerical simulation of tooth movement by wire bending. Am J Orthod Dentofacial Orthop 2006;130(4):452–9.
[28] Kojima Y, Mizuno T, Fukui H. A numerical simulation of tooth movement produced by molar uprighting spring. Am J Orthod Dentofacial Orthop 2007;132(5):630–8.
[29] Kojima Y, Fukui H. Numerical simulations of canine retraction with T-loop springs based on the updated moment-to-force ratio. Eur J Orthod 2012;34(1):10–8. http://dx.doi.org/10.1093/ejo/cjq164.
[30] Lindauer SJ, Isaacson RJ. One-couple orthodontic appliance systems. Semin Orthod 1995;1(1):12–24. http://dx.doi.org/10.1016/S1073-8746(95)80084-0.
[31] Jost-Brinkmann PG, Tanne K, Sakuda M, Miethke RR. A FEM study for the biomechanical comparison of labial and palatal force application on the upper incisors. Finite element method. Fortschr Kieferorthop 1993;54(2):76–82. http://dx.doi.org/10.1007/bf02164839.
[32] Hong RK, Hong HP, Koh HS. Effect of reverse curve mushroom archwire on lower incisors in adult patients: a prospective study. Angle Orthod 2001;71(6):425–32.
[33] Proffit WR, Fields Jr HW. Contemporary orthodontics. 3rd ed. Philadelphia: Mosby Inc.; 2000. p. 304.
Uwagi
PL Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Kolekcja BazTech
Identyfikator YADDA bwmeta1.element.baztech-2a098eff-b50e-4dbb-9fe5-df8a63c42c22
Identyfikatory
DOI 10.1016/j.bbe.2017.05.005