Narzędzia help

Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
first previous next last
cannonical link button

http://yadda.icm.edu.pl:80/baztech/element/bwmeta1.element.baztech-259666a4-5cab-468e-819d-963116b4a575

Czasopismo

Oceanologia

Tytuł artykułu

Acid volatile sulphide estimation using spatial sediment covariates in the Eastern Upper Gulf of Thailand : Multiple geostatistical approaches

Autorzy Chaikaew, P.  Sompongchaiyakul, P. 
Treść / Zawartość http://www.iopan.gda.pl/oceanologia/ http://www.sciencedirect.com/journal/oceanologia
Warianty tytułu
Języki publikacji EN
Abstrakty
EN Acid volatile sulphide (AVS), one of the most reactive phases in sediments, is a crucial link in explaining a dynamic biogeochemical cycle in a marine ecosystem. Research gaps exist in describing the spatial variation of AVS and interconnections with sediment covariates in the Eastern Upper Gulf of Thailand. Measurements of AVS and auxiliary parameters followed the standard protocol. A comparison of ordinary kriging (OK), cokriging (CK), and regression kriging (RK) performance was evaluated based on the mean absolute error (MAE) and root mean square error (RMSE). The concentrations of AVS ranged from 0.003 to 0.349 mg g−1sediment dry weight. Most parameters contained short range spatial dependency except for oxidation-reduction potential (ORP) and pH. The AVS tended to be both linearly and non-linearly related to ORP and readily oxidisable organic matter (ROM). The RK model, using inputs from the tree-based model, was the most robust of the three kriging methods. It is suggested that nonlinear interactions should be taken into account when predicting AVS concentration, and it is expected that this will further increase the model accuracy. This study helps establish a platform for ecological health and sediment quality guidelines.
Słowa kluczowe
EN spatial estimation   acid volatile sulphide   sediment   geostatistical analysis   Gulf of Thailand  
Wydawca Polish Academy of Sciences, Institute of Oceanology
Elsevier
Czasopismo Oceanologia
Rocznik 2018
Tom No. 60 (4)
Strony 478--487
Opis fizyczny Bibliogr. 43 poz., mapy, rys., tab., wykr.
Twórcy
autor Chaikaew, P.
  • Department of Environmental Science, Faculty of Science, Chulalongkorn University, Bangkok, Thailand, pasicha.c@chula.ac.th
  • Center of Excellence on Hazardous Substance Management, Chulalongkorn University, Bangkok, Thailand
autor Sompongchaiyakul, P.
  • Department of Marine Science, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
  • Center of Excellence on Hazardous Substance Management, Chulalongkorn University, Bangkok, Thailand
Bibliografia
[1] Allen, H. E., Fu, G., Deng, B., 1993. Analysis of acid-volatile sulfide (AVS) and simultaneously extracted metals (SEM) for the estimation of potential toxicity in aquatic sediments. Environ. Toxicol. Chem. 12, 1441-1453, http://dx.doi.org/10.1002/etc.5620120812.
[2] Barton, L. (Ed.), 1995. Sulfate-reducing Bacteria, Biotechnology Handbooks. Springer Science + Business Media, LLC, New York, 336 pp.
[3] Boonphakdee, T., Sawangwong, P., Fujiwara, T., 1999. Freshwater discharge of Bangpakong River flowing into the inner Gulf of Thailand. Lamer 37, 103-109.
[4] Buranapratheprat, A., 2008. Circulation in the Upper Gulf of Thailand: a review. Burapha Sci. J. 13, 75-83.
[5] Burnett, W. C., Wattayakorn, G., Taniguchi, M., Dulaiova, H., Sojisuporn, P., Rungsupa, S., Ishitobi, T., 2007. Groundwater-derived nutrient inputs to the Upper Gulf of Thailand. Cont. Shelf Res. 27 (2), 176-190, http://dx.doi.org/10.1016/j.csr.2006.09.006.
[6] Caetano, M., Madureira, M.-J., Vale, C., 2003. Metal remobilisation during resuspension of anoxic contaminated sediment: short-term laboratory study. Water Air Soil Pollut. 143 (1-4), 23-40, http://dx.doi.org/10.1023/A:1022877120813.
[7] Cambardella, C. A., Moorman, T. B., Parkin, T. B., Karlen, D. L., Novak, J. M., Turco, R. F., Konopka, A. E., 1994. Field-scale variability of soil properties in central Iowa soils. Soil Sci. Soc. Am. J. 58 (5), 1501, http://dx.doi.org/10.2136/sssaj1994.03615995005800050033x.
[8] Carver, R. E., 1971. Procedures in Sedimentary Petrology. John Wiley & Sons Ltd., New York, 653 pp.
[9] Chaikaew, P., Nawatrairat, N., Srithongouthai, S., 2017. Modeling spatio-vertical distribution of sulfate and total sulfide along the mangrove intertidal zone. Environ. Asia 10 (2), 1-8, http://dx.doi.org/10.14456/ea.2017.15.
[10] Emery, K. O., Niino, H., 1963. Sediments of the Gulf of Thailand and adjacent continental shelf. GSA Bull. 74 (5), 541-554, http://dx.doi.org/10.1130/0016-7606(1963)74[541:SOTGOT]2.0.CO;2.
[11] Gastec Corporation, 2017. Gas Detector Tubes (and Some Relevant Industrial Standards).
[12] Goovaerts, P., 1999. Geostatistics in soil science: state-of-the-art and perspectives. Geoderma 89 (1-2), 1-45, http://dx.doi.org/10.1016/S0016-7061(98)00078-0.
[13] Goovaerts, P., 1997. Geostatistics for Natural Resources Evaluation, Applied Geostatistics Series. Oxford University Press, New York, 483 pp.
[14] Grunwald, S. (Ed.), 2006. Environmental Soil-Landscape Modeling — Geographic Information Technologies and Pedometrics. CRC Press, Boca Raton, 504 pp.
[15] Jiwarungrueangkul, T., Dharmavanij, S., Sompongchaiyakul, P., Kornkanitnan, N., 2015. Equilibrium partitioning approach to define sediment quality guideline of some metals in Chao Phraya Estuary, Thailand. Asian J. Water Environ. Pollut. 12 (3), 23-31, http://dx.doi.org/10.3233/AJW-150004.
[16] Johnson, W. S., Allen, D. M., 2012. Zooplankton of the Atlantic and Gulf Coasts: A Guide to Their Identification and Ecology, 2nd ed. The Johns Hopkins University Press, Baltimore, 452 pp.
[17] Kanaya, G., 2014. Recolonization of macrozoobenthos on defaunated sediments in a hypertrophic brackish lagoon: effects of sulfide removal and sediment grain size. Mar. Environ. Res. 95, 81-88, http://dx.doi.org/10.1016/j.marenvres.2013.12.014.
[18] Khaodon, K., Intarachart, A., Joeraket, W., 2011. Some aspects of sediment quality in eastern coast of the Gulf of Thailand. In: Presented at the Kasetsart University Annual Conference, 1-4 February, 2011, Bangkok (Thailand).
[19] Krige, D. G., 1951. A statistical approach to some basic mine valuation problems on the Witwatersrand. J. Chem. Met. Min. Soc. S. Afr. 52, 119-139.
[20] Li, J., Heap, A. D., Potter, A., Daniell, J. J., 2011. Application of machine learning methods to spatial interpolation of environmental variables. Environ. Modell. Softw. 26 (12), 1647-1659, http://dx.doi.org/10.1016/j.envsoft.2011.07.004.
[21] Loring, D. H., Rantala, R. T. T., 1992. Manual for the geochemical analyses of marine sediments and suspended particulate matter. Earth-Sci. Rev. 32 (4), 235-283, http://dx.doi.org/10.1016/0012-8252(92)90001-A.
[22] Martínez-Cob, A., 1996. Multivariate geostatistical analysis of evapo-transpiration and precipitation in mountainous terrain. J. Hydrol. 174 (1-2), 19-35, http://dx.doi.org/10.1016/0022-1694(95)02755-6.
[23] Mayer, L. M., 1994. Surface area control of organic carbon accumulation in continental shelf sediments. Geochim. Cosmochim. Acta
58 (4), 1271-1284, http://dx.doi.org/10.1016/0016-7037(94)90381-6.
[24] Mayer, L. M., Jumars, P. A., Taghon, G. L., Macko, S. A., Trumbore, S., 1993. Low-density particles as potential nitrogenous foods for benthos. J. Mar. Res. 51 (2), 373-389, http://dx.doi.org/10.1357/0022240933223738.
[25] McBratney, A. B., Mendonc¸a Santos, M. L., Minasny, B., 2003. On digital soil mapping. Geoderma 117 (1-2), 3-52, http://dx.doi.org/10.1016/S0016-7061(03)00223-4.
[26] Milliman, J. D., Farnsworth, K. L., 2011. River Discharge to the Coastal Ocean: A Global Synthesis. University Press, Cambridge, UK, 394 pp.
[27] Moqsud, M. A., Shigenori, H., 2016. Evaluation of acid volatile sulfide (AVS) distribution in tidal mud of the Ariake Sea, Japan. Int. J. Energy Environ. Res. 4, 1-6.
[28] Moral, F. J., 2010. Comparison of different geostatistical approaches to map climate variables: application to precipitation. Int. J. Climatol. 30 (4), 620-631, http://dx.doi.org/10.1002/joc.1913.
[29] Morimoto, A., 2015. Behavior of anoxic water in the Bangpakong estuary. Mar. Res. Indonesia 37 (2), 109-121, http://dx.doi.org/10.14203/mri.v37i2.29.
[30] Morse, J. W., Cornwell, J. C., 1987. Analysis and distribution of iron sulfide minerals in recent anoxic marine sediments. Mar. Chem. 22 (1), 55-69, http://dx.doi.org/10.1016/0304-4203(87)90048-X.
[31] Morse, J. W., Millero, J. M., Cornwell, J. C., Rickard, D., 1987. The chemistry of the hydrogen sulfide and iron sulfide systems in natural waters. Earth-Sci. Rev. 24, 1-42.
[32] Prasad, A. M., Iverson, L. R., Liaw, A., 2006. Newer classification and regression tree techniques: bagging and random forests for ecological prediction. Ecosystems 9 (2), 181-199, http://dx.doi.org/10.1007/s10021-005-0054-1.
[33] Qiao, S., Shi, X., Fang, X., Liu, S., Kornkanitnan, N., Gao, J., Zhu, A., Hu, L., Yu, Y., 2015. Heavy metal and clay mineral analyses in the sediments of Upper Gulf of Thailand and their implications on sedimentary provenance and dispersion pattern. J. Asian Earth. Sci. 114 (3), 488-496, http://dx.doi.org/10.1016/j.jseaes.2015.04.043.
[34] Simpson, S. L., Ward, D., Strom, D., Jolley, D. F., 2012. Oxidation of acid-volatile sulfide in surface sediments increases the release and toxicity of copper to the benthic amphipod Melita plumulosa. Chemosphere 88, 953-961, http://dx.doi.org/10.1016/j.chemosphere.2012.03.026.
[35] Srisuksawad, K., Porntepkasemsan, B., Nouchpramool, S., Yamkate, P., Carpenter, R., Peterson, M. L., Hamilton, T., 1997. Radionuclide activities, geochemistry, and accumulation rates of sediments in the Gulf of Thailand. Cont. Shelf Res. 17 (8), 925-965, http://dx.doi.org/10.1016/S0278-4343(96)00065-9.
[36] Šiljeg, A., Lozić, S., Šiljeg, S., 2015. A comparison of interpolation methods on the basis of data obtained from a bathymetric survey of Lake Vrana, Croatia. Hydrol. Earth Syst. Sci. 19 (8), 3653-3666, http://dx.doi.org/10.5194/hess-19-3653-2015.
[37] Taghizadeh-Mehrjardi, R., Toomanian, N., Khavaninzadeh, A. R., Triantafilis, J., 2016. Predicting and mapping of soil particle-size fractions with adaptive neuro-fuzzy inference and ant colony optimization in central Iran. Eur. J. Soil Sci. 67, 707-725.
[38] van Griethuysen, C., Meijboom, E. W., Koelmans, A. A., 2003. Spatial variation of metals and acid volatile sulfide in floodplain lake sediment. Environ. Toxicol. Chem. 22, 457-465.
[39] Wattayakorn, G., 2006. Environmental Issues in the Gulf of Thailand. In: The Environment in Asia Pacific Harbours. Springer, Dordrecht, 249-259, http://dx.doi.org/10.1007/1-4020-3655-8_16.
[40] Webster, R., Oliver, M. A., 2001. Geostatistics for Environmental Scientists. John Wiley & Sons Ltd., West Sussex, 330 pp.
[41] Wongsin, T., Boonprab, K., Okamoto, Y., Salaenoi, J., 2015. Hydrogen sulfide distribution in sediments collected from cockle farm at Bandon Bay, Thailand. In: Presented at the International Conference on Plant, Marine and Environmental Sciences (PMES-2015), Kuala Lumpur, Malaysia, 97-99.
[42] Wu, S. S., Tsutsumi, H., Kita-Tsukamoto, K., Kogure, K., Ohwada, K., Wada, M., 2003. Visualization of the respiring bacteria in sediments inhabited by Capitella sp. 1. Fish. Sci. 69 (1), 170-175, http://dx.doi.org/10.1046/j.1444-2906.2003.00602.x.
[43] Xing, L., Zhang, H., Yuan, Z., Sun, Y., Zhao, M., 2011. Terrestrial and marine biomarker estimates of organic matter sources and distributions in surface sediments from the East China Sea shelf. Cont. Shelf Res. 31 (10), 1106-1115, http://dx.doi.org/10.1016/j.csr.2011.04.003.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Kolekcja BazTech
Identyfikator YADDA bwmeta1.element.baztech-259666a4-5cab-468e-819d-963116b4a575
Identyfikatory
DOI 10.1016/j.oceano.2018.03.003