Narzędzia help

Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
first previous next last
cannonical link button


Biocybernetics and Biomedical Engineering

Tytuł artykułu

Blood flows in end-to-end arteriovenous fistulas: Unsteady and steady state numerical investigations of three patient-specific cases

Autorzy Jodko, D.  Obidowski, D.  Reorowicz, P.  Jóźwik, K. 
Treść / Zawartość
Warianty tytułu
Języki publikacji EN
EN The arterio-venous fistula is a widely accepted vascular access for haemodialysis - a treatment for the end-stage renal disease. However, a significant number of complications (stenoses, thromboses, aneurysms) of fistulas can occur, which are related to the geometry of the anastomosis and the local abnormal hemodynamics. Local flow conditions, in particular the wall shear stress (WSS), are thought to affect sensitive endothelial cells on the inner vessel wall, which leads to intimal hyperplasia. This study presents the results obtained from numerical simulations of the blood flow through three patient-specific end-to-end fistulas which were assessed to be more likely dysfunctional than the end-to side ones. Unsteady and comparative steady-state simulations of blood flow were performed in ANSYS CFX. The obtained results show behaviour of the blood, velocity fields, shear strain, vorticity range, blood viscosity changes, a WSS distribution on vessel walls and give information about the flow rate in the veins receiving blood from fistulas. Blood flow animations are attached to the online version of the paper. Numerical methods seem to be the only opportunity to provide complete information on the distribution and range of the WSS for complicated shapes of blood vessels used to fistula creation, however the WSS is strongly dependent on the local geometry and mesh quality. High values of the shear strain, associated with elevated values of shear stress, found in each model, could increase a risk of haemolysis. High shear environment with raised vorticity can result in activation of platelets and further platelet aggregation and thrombosis.
Słowa kluczowe
PL przetoka tętniczo-żylna   zakrzepica   naprężenie styczne ścian   dostęp naczyniowy  
EN anastomosis   arteriovenous fistula   thrombosis   wall shear stress   vascular access  
Wydawca Nałęcz Institute of Biocybernetics and Biomedical Engineering of the Polish Academy of Sciences
Czasopismo Biocybernetics and Biomedical Engineering
Rocznik 2017
Tom Vol. 37, no. 3
Strony 528--539
Opis fizyczny Bibliogr. 37 poz., rys., tab., wykr.
autor Jodko, D.
  • Lodz University of Technology, Institute of Turbomachinery, 219/223 Wolczanska St, 90-924 Lodz, Poland,
autor Obidowski, D.
  • Lodz University of Technology, Institute of Turbomachinery, 219/223 Wolczanska St, 90-924 Lodz, Poland
autor Reorowicz, P.
  • Lodz University of Technology, Institute of Turbomachinery, 219/223 Wolczanska St, 90-924 Lodz, Poland
autor Jóźwik, K.
  • Lodz University of Technology, Institute of Turbomachinery, 219/223 Wolczanska St, 90-924 Lodz, Poland
[1] Brescia MJ, Cimino JE, Appel K, Hurwich BJ. Chronic hemodialysis using venipuncture and a surgically created arteriovenous fistula. N Engl J Med 1966;275(20):1089–92.
[2] US Renal Data System Technical Report. 2014 USRDS annual data report volume 2: end-stage renal disease. Washington Heights; 2014.
[3] Besarab A, Asif A, Roy-Chaudhury P, Spergel LM, Ravani P. The native arteriovenous fistula in 2007. Surveillance and monitoring. J Nephrol 2007;20:656–67.
[4] Stanziale R, Lodi M, D'Andrea E, Sammartino F, DI Luzio V. Arteriovenous fistula: end-to-end or end-to-side anastomosis? Hemodial Int 2011;15:100–3.
[5] Crosetto P, Reymond P, Deparis S, Quarteroni A. Fluid-structure interaction simulation of aortic blood flow. Comput Fluids 2011;43:46–57.
[6] Ene-Iordache B, Cattaneo L, Dubini G, Remuzzi A. Effect of anastomosis angle on the localization of disturbed flow in 'side-to-end' fistulae for haemodialysis access. Nephrol Dial Transplant 2013;28:997–1005.
[7] McGah PM, Leotta DF, Beach KW, Eugene Zierler R, Aliseda A. Incomplete restoration of homeostatic shear stress within arteriovenous fistulae. J Biomech Eng 2013;135 (1):51–9.
[8] McGah PM, Leotta DF, Beach KW, Aliseda A. Effects of wall distensibility in hemodynamic simulations of an arteriovenous fistula. Biomech Model Mechanobiol 2014;13:679–95.
[9] Jodko D, Obidowski D, Reorowicz P, Jozwik K. Simulations of the blood flow in the arterio-venous fistula for haemodialysis. Acta Bioeng Biomech 2014;16(1):69–74.
[10] Reorowicz P, Obidowski D, Klosinski P, Szubert W, Stefanczyk L, Jozwik K. Numerical simulations of the blood flow in the patient-specific arterial cerebral circle region. J Biomech 2014;47:1642–51.
[11] Celik IB, Ghia U, Roache PJ, Freitas CJ, Coleman H, Raad PE. Procedure for estimation and reporting of uncertainty due to discretization in CFD applications. J Fluids Eng 2008;130:1–4.
[12] Browne LD, Walsh MT, Griffin P. Experimental and numerical analysis of the bulk flow parameters within an arteriovenous fistula. Cardiovasc Eng Technol 2015;6 (4):450–62.
[13] Jodko D, Obidowski D, Reorowicz P, Klosinski P, Jozwik K. Angular position determination of heart valves in the pediatric ventricular assist device with use of computational fluid dynamics. Curr Probl Biomech 2014;8:57–62.
[14] Pietura R, Janczarek M, Zaluska W, Szymanska A, Janicka L, Skublewska-Bednarek A, et al. Colour Doppler ultrasound assessment of well-functioning mature arteriovenous fistulas for haemodialysis access. Eur J Radiol 2005;55 (1):113–9.
[15] Obidowski D. Blood flow simulation through human vertebral arteries.PhD Dissertation Lodz University of Technology; 2011. [in Polish].
[16] Corpataux JM, Haesler E, Silacci P, Ris HB, Hayoz D. Low-pressure environment and remodelling of the forearm vein in Brescia-Cimino haemodialysis access. Nephrol Dial Transplant 2002;17:1057–62.
[17] ANSYS CFX Theory Guide. ANSYS Release 15.0 ANSYS Inc.
[18] Menter FR. Two-equation eddy-viscosity turbulence models for engineering applications. Am Inst Aeronaut Astronaut J 1994;32(8):1598–605.
[19] Menter FR, Kuntz M, Langtry R. Ten years of industrial experience with the SST turbulence model. Proceedings of the Fourth International Symposium on Turbulence, Heat and Mass Transfer; 2003.
[20] Shin S, Keum Do-Y. Measurement of blood viscosity using mass-detecting sensor. Biosens Bioelectron 2002;17:383–8.
[21] Johnston BM, Johnston PR, Corney S, Kilpatrick D. Non- Newtonian blood flow in human right coronary arteries: transient simulations. J Biomech 2006;39:1116–28.
[22] Jozwik K, Obidowski D. Numerical simulations of the blood flow through vertebral arteries. J Biomech 2010;43:177–85.
[23] Kenner T. The measurement of blood density and its meaning. Basic Res Cardiol 1989;84:111–24.
[24] Sivanesan S, How TV, Black RA, Bakran A. Flow patterns in the radiocephalic arteriovenous fistula: an in vitro study. J Biomech 1999;32:915–25.
[25] Ene-Iordache B, Remuzzi A. Disturbed flow in radial-cephalic arteriovenous fistulae for haemodialysis: low and oscillating shear stress locates the sites of stenosis. Nephrol Dial Transplant 2012;27:358–68.
[26] Botti L, Canneyt KV, Kaminsky R, Claessens T, Planken RN, Verdonck P, et al. Numerical evaluation and experimental validation of pressure drops across a patient-specific model of vascular access for hemodialysis. Cardiovasc Eng Technol 2013;4(4):485–99.
[27] Konner K, Nonnast-Daniel B, Ritz E. The arteriovenous fistula. J Am Soc Nephrol 2003;14:1669–80.
[28] Kharboutly Z, Deplano V, Bertrand E, Legallais C. Numerical and experimental study of blood flow through a patient-specific arteriovenous fistula used for hemodialysis. Med Eng Phys 2010;32(2):111–8.
[29] Dixon BS. Why don't fistulas mature? Kidney Int 2006;70:1413–22.
[30] Womersley JR. Method for the calculation of velocity, rate of flow and viscous drag in arteries when the pressure gradient is known. J Physiol (Lond) 1955;127:553–63.
[31] Decorato I, Kharboutly Z, Vassallo T, Penrose J, Legallais C, Salsac AV. Numerical simulation of the fluid structure interactions in a compliant patient-specific arteriovenous fistula. Int J Numer Methods Biomed Eng 2014;30(2): 143–59.
[32] Chiu J-J, Chien S. Effects of disturbed flow on vascular endothelium: pathophysiological basis and clinical perspectives. Physiol Rev 2011;91:327–87.
[33] Chatzizisis YS, Coskun AU, Jonas M, Edelman ER, Feldman CL, Stone PH. Role of endothelial shear stress in the natural history of coronary atherosclerosis and vascular remodeling. J Am Coll Cardiol 2007;49(25):2379–93.
[34] Arora D, Behr M, Pasquali M. A tensor-based measure for estimating blood damage. Artif Organs 2004;28:1002–15.
[35] Morbiducci U, Ponzini R, Nobili M, Massai D, Montevecchi FM, Bluestein D, et al. Blood damage safety of prosthetic heart valves. Shear-induced platelet activation and local flow dynamics: a fluid-structure interaction approach. J Biomech 2009;42:1952–60.
[36] Wang JJ, Parker KH. Wave propagation in a model of the arterial circulation. J Biomech 2004;37:457–70.
[37] Caroli A, Manini S, Antiga L, Passera K, Ene-Iordache B, Rota S, et al. Validation of patient-specific hemodynamic computational model for surgical planning of vascular access in hemodialysis patients. Kidney Int 2013;84:1237–45.
PL Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Kolekcja BazTech
Identyfikator YADDA bwmeta1.element.baztech-22c04638-f1f5-487d-a8a4-e197a316c98f
DOI 10.1016/j.bbe.2017.05.006