Narzędzia help

Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
first last
cannonical link button


Archives of Environmental Protection

Tytuł artykułu

Characterization of monochlorobenzene contamination in soils using geostatistical interpolation and 3D visualization for agrochemical industrial sites in southeast China

Autorzy Ren, L.  Lu, H.  He, L.  Zhang, Y. 
Treść / Zawartość
Warianty tytułu
Języki publikacji EN
EN Persistent organic pollutants (POPs) originating from agrochemical industries have become an urgent environmental problem worldwide. Ordinary kriging, as an optimal geostatistical interpolation technique, has been proved to be sufficiently robust for estimating values with finite sampled data in most of the cases. In this study, ordinary kriging interpolation integrate with 3D visualization methods is applied to characterize the monochlorobenzene contaminated soil for an agrochemical industrial site located in Jiangsu province. Based on 944 soil samples collected by Geoprobe 540MT and monitored by SGS environmental monitoring services, 3D visualization in terms of the spatial distribution of pollutants in potentially contaminated soil, the extent and severity of the pollution levels in different layers, high concentration levels and isolines of monochlorobenzene concentrations in this area are provided. From the obtained results, more information taking into account the spatial heterogeneity of soil area will be helpful for decision makers to develop and implement the soil remediation strategy in the future.
Słowa kluczowe
EN soil pollution   monochlorobenzene   POPs   persistent organic pollutants   geostatistical interpolation   3D visualization  
Wydawca Polish Academy of Sciences, Institute of Environmental Engineering, Committee of Environmental Engineering
Czasopismo Archives of Environmental Protection
Rocznik 2016
Tom Vol. 42, no. 3
Strony 17--24
Opis fizyczny Bibliogr. 25 poz., wykr.
autor Ren, L.
  • North China Electric Power University, China School of Renewable Energy
autor Lu, H.
  • North China Electric Power University, China School of Renewable Energy
  • North China Electric Power University, China State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources
autor He, L.
  • North China Electric Power University, China School of Renewable Energy,
  • North China Electric Power University, China State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources
autor Zhang, Y.
  • North China Electric Power University, China Suzhou Research Academy
[1]. Agarwal, S., Al-Abed, S.R. & Dionysiou, D.D. (2007). In situ technologies for reclamation of PCB-contaminated sediments: current challenges and research thrust areas, Journal of Environmental Engineering, 133, 12, pp. 1075–1078.
[2]. Bagieński, Z. (2008). Analysis of diffusion within cavity region of pollutants from short-point sources-wind tunnel experimental investigation, Environment Protection Engineering, 34, 4, pp. 43–50.
[3]. Barchanska, H., Czaplicka, M. & Giemza, A. (2013). Simultaneous determination of selected insecticides and atrazine in soil by Mae-GC-EC, Archives of Environmental Protection, 39, 1, pp. 27–40.
[4]. Bezak-Mazur, E., Dabek, L. & Ozimina, E. (2007). Assessing the migration of organic halogen compounds from sewage sludge to a liquid phase, Environment Protection Engineering, 33, 2, pp. 5–51.
[5]. Bhattacharjee, S., Mitra, P. & Ghosh, S.K. (2014). Spatial interpolation to predict missing attributes in GIS using semantic Kriging, Ieee Transactions on Geoscience and Remote Sensing, 52, 8, pp. 4771–4780.
[6]. Burgess, T.M. & Webster, R. (1980). Optimal interpolation and arithmic mapping of soil properties: the semivariogram and punctual Kriging, Soil Science, 31, pp. 315–331.
[7]. Emadi, M. & Baghernejad, M. (2014). Comparison of spatial interpolation techniques for mapping soil pH and salinity in agricultural coastal areas, northern Iran, Archives of Agronomy and Soil Science, 60, 9, pp. 1315–1327.
[8]. Ersoy, A., Yunsel, T.Y. & Cetin, M. (2004). Characterization of land contaminated by past heavy metal mining using geostatistical methods, Archives of Environmental Contamination and Toxicology, 46, 2, pp. 162–175.
[9]. Fazio, R. & Jannelli, A. (2014). Finite difference schemes on quasi-uniform grids for BVPs on infinite intervals, Journal of Computational and Applied Mathematics, 269, pp. 14–23.
[10]. Ficko, S., Rutter, A. & Zeeb, B. (2011). Effect of pumpkin root exudates on ex situ polychlorinated biphenyl (PCB) phytoextraction by pumpkin and weed species, Environmental Science and Pollution Research, 18, pp. 1536–1543.
[11]. Helena, I.G., Celia, D.F. & Alexandra, B.R. (2013). Overview of in situ and ex situ remediation technologies for PCB-contaminated soils and sediments and obstacles for full-scale application, Science of the Total Environment, 445–446, pp. 237–260.
[12]. Henriksson, S., Hagberg, J., Backstrom, M., Persson, I. & Lindstrom, G. (2013). Assessment of PCDD/Fs levels in soil at a contaminated sawmill site in Sweden – A GIS and PCA approach to interpret the contamination pattern and distribution, Environmental Pollution, 180, pp. 19–26.
[13]. Kaliraj, S., Chandrasekar, N. & Magesh, N.S. (2013). Identification of potential groundwater recharge zones in Vaigai upper basin, Tamil Nadu, using GIS-based analytical hierarchical process (AHP) technique, Arabian Journal of Geosciences, 7, 4, pp. 1385–1401.
[14]. Lee, C.S., Li, X.D., Shi, W.Z., Cheung, S.C. & Thornton, L. (2006). Metal contamination in urban, suburban, and country park soils of Hong Kong: A study based on GIS and multivariate statistics, Science of the Total Environment, 356, pp. 45–61.
[15]. Lisowska, E. (2010). PAH soil concentrations in the vicinity of charcoal kilns in Bieszczady, Archives of Environmental Protection, 36, 4, pp. 41–54.
[16]. Liu, X.M., Wu, J.J. & Xu, J.M. (2006). Characterizing the risk assessment of heavy metals and sampling uncertainty analysis in paddy field by geostatistics and GIS, Environmental Pollution, 141, 2, pp. 257–264.
[17]. Patel, D.P., Dholakia, M.B., Naresh, N. & Srivastava, P.K. (2012). Water harvesting structure positioning by using geo-visualization concept and prioritization of mini-watersheds through morphometric analysis in the Lower Tapi Basin, Journal of the Indian Chemical Society, 40, 2, pp. 299–312.
[18]. Ren, L.X., Lu, H.W., He, L. & Zhang, Y.M. (2014). Enhanced electrokinetic technologies with oxidization–reduction for organically-contaminated soil remediation, Chemical Engineering Journal, 247, pp. 111–124.
[19]. Rosinska, A. & Dabrowska, L. (2011). PCBs and heavy metals in water and bottom sediments of the Kozłowa Góra Dam Reservoir, Archives of Environmental Protection, 37, 4, pp. 61–73.
[20]. Sato, T., Todoroki, T., Shimoda, K., Terada, A. & Hosomi, M. (2010). Behavior of PCDDs/PCDFs in remediation of PCBs-contaminated sediments by ion, Chemosphere, 80, 2, pp. 184–189.
[21]. van Es, B., Koren, B. & de Blank, H.J. (2014). Finite-difference schemes for anisotropic diffusion, Journal of Computational Physics, 272, pp. 526–549.
[22]. Wlodarczyk-Makula, M. (2012). Half-life of carcinogenic Polycyclic Aromatic Hydrocarbons in stored sewage sludge, Archives of Environmental Protection, 38, 2, pp. 33–44.
[23]. Wu, Y.H., Hung, M.C. & Patton, J. (2013). Assessment and visualization of spatial interpolation of soil pH values in farmland, Precision Agriculture, 14, 6, pp. 565–585.
[24]. Yang, X.D., Cui, W.H., Wang, P. & Huang, Y.Q. (2007). The simulation of 3D structure of groundwater system based on Java/Java3D, Geoinformatics, 6753, pp. 75330–75330.
[25]. Zhang, C.S., Luo, L., Xu, W.L. & Ledwith, V. (2008). Use of local Moran’s I and GIS to identify pollution hotspots of Pb in urban soils of Galway, Ireland, Science of The Total Environment, 398, 1–3, pp. 212–221.
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Kolekcja BazTech
Identyfikator YADDA bwmeta1.element.baztech-22952e93-3ce0-4cf2-9060-2c3325fdf610
DOI 10.1515/aep-2016-0025