Narzędzia help

Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
first last
cannonical link button

http://yadda.icm.edu.pl:80/baztech/element/bwmeta1.element.baztech-1ffad900-39df-4323-8e27-7a8cee806276

Czasopismo

Opto - Electronics Review

Tytuł artykułu

Theoretical modelling of XBn T2SLs InAs/InAsSb/B-AlAsSb mid-wave detector operating below thermoelectrical cooling

Autorzy Martyniuk, Piotr  Michalczewski, K.  Tsai, T.Y.  Wu, C.H.  Wu, Y.R. 
Treść / Zawartość http://www.wat.edu.pl/review/optor/contents.htm
Warianty tytułu
Języki publikacji EN
Abstrakty
EN The paper reports on the barrier mid-wave infrared InAs/InAsSb (xSb = 0.4) type-II superlattice detector operating below thermoelectrical cooling. AlAsSb with Sb composition, xSb = 0.97; barrier doping, ND < 2×1016 cm−3 leading to valence band offset below 100 meV in relation to the active layer doping, ND = 5×1015 cm−3 was proved to be proper material not introducing extra barrier in valence band in the analyzed temperature range in XBn architectures. The detectivity of the simulated structure was assessed at the level of ∼ 1011 Jones at T ∼ 100K assuming absorber thickness, d = 3 μm. The detector’s architecture for high frequency response operation, τs = 420 ps (T ∼ 77K) was presented with a reduced active layer of d = 1 μm.
Słowa kluczowe
EN MWIR   T2SLs InAs/InAsSb   barrier detector   bariode  
Wydawca Wojskowa Akademia Techniczna im. Jarosława Dąbrowskiego
Czasopismo Opto - Electronics Review
Rocznik 2019
Tom Vol. 27, No. 3
Strony 275--281
Opis fizyczny Bibliogr. 10 poz., wykr., tab.
Twórcy
autor Martyniuk, Piotr
  • Institute of Applied Physics, Military University of Technology, 2 Gen. S. Kaliskiego St., 00-908 Warsaw, Poland, piotr.martyniuk@wat.edu.pl
autor Michalczewski, K.
  • Institute of Applied Physics, Military University of Technology, 2 Gen. S. Kaliskiego St., 00-908 Warsaw, Poland
autor Tsai, T.Y.
  • Graduate Institute of Photonics and Optoelectronics, National Taiwan University, Roosevelt Rd., 10617 Taipei, Taiwan
autor Wu, C.H.
  • Graduate Institute of Photonics and Optoelectronics, National Taiwan University, Roosevelt Rd., 10617 Taipei, Taiwan
autor Wu, Y.R.
  • Graduate Institute of Photonics and Optoelectronics, National Taiwan University, Roosevelt Rd., 10617 Taipei, Taiwan
Bibliografia
[1] D.Z.-Y. Ting, A. Soibel, L. Höglund, J. Nguyen, C.J. Hill, A. Khoshakhlagh, S.D.Gunapala, Type-II superlattice infrared detectors, Semicond. Semimetals 84(2011) 1–57, http://dx.doi.org/10.1016/B978-0-12-381337-4.00001-2.
[2] D. Lackner, M. Steger, M.L.W. Thewalt, O.J. Pitts, Y.T. Cherng, InAs/InAsSb strain balanced superlattices for optical detectors, material properties and energy band simulations, J. Appl. Phys. 111 (2012), 034507-1–9, http://dx.doi.org/10.1063/1.3681328.
[3] T. Schuler-Sandy, S. Myers, B. Klein, N. Gautam, P. Ahirwar, Z.-B. Tian, T.Rotter, G. Balakrishnan, E. Plis, S. Krishna, Gallium free type II InAs/InAsxSb1-x superlattice photodetectors, Appl. Phys. Lett. 101 (2012), 071111-1–3, http://dx.doi.org/10.1063/1.4745926.
[4] E.H. Steenbergen, B.C. Connelly, G.D. Metcalfe, H. Shen, M. Wraback, D.Lubyshev, Y. Qiu, J.M. Fastenau, A.W.K. Liu, S. Elhamri, O.O. Cellek, Y.-H.Zhang, Significantly improved minority carrier lifetime observed in along-wavelength infrared III-V type-II superlattice comprised of InAs/InAsSb, Appl. Phys. Lett. 99 (2011), 251110-1–3, http://dx.doi.org/10.1063/1.3671398.
[5] L. Höglund, D.Z.-Y. Ting, A. Khoshakhlagh, A. Soibel, C.J. Hill, A. Fisher, S. Keo,S.D. Gunapala, Influence of radiative and non-radiative recombination on theminority carrier lifetime in midwave infrared InAs/InAsSb superlattices, Appl.Phys. Lett. 103 (2013), 221908-1–5, http://dx.doi.org/10.1063/1.4835055.
[6] S. Maimon, G.W. Wicks, nBn detector, an infrared detector with reduced darkcurrent and higher operating temperature, Appl. Phys. Lett. 89 (2006),151109-1-3, http://dx.doi.org/10.1063/1.2360235.
[7] I. Vurgaftman, J.R. Meyer, Band parameters for III–V compoundsemiconductors and their alloys, J. Appl. Phys. 89 (2001) 5815–5875, http://dx.doi.org/10.1063/1.1368156.
[8] V.O. Turin, A modified transferred-electron high-field mobility model for GaN devices simulation, Solid-State Electron. 49 (10) (2005) 1678–1682, http://dx.doi.org/10.1016/j.sse.2005.09.002.
[9] J.-P. Perez, Q. Durlin, C. Cervera, P. Christol, New Ga-Free InAs/InAsSb superlattice infrared photodetector, In Proceedings of the 6th International Conference on Photonics, Optics and Laser Technology (2018) 232–237,http://dx.doi.org/10.5220/0006634002320237.
[10] Q. Li, R.W. Dutton, Numerical small-signal AC modeling of deep-level-traprelated frequency-dependent output conductance and capacitance for GaAsMESFET’s on semi-insulating substrates, IEEE Trans. Electron Devices 38(1991) 1285–1288, http://dx.doi.org/10.1109/16.81618.
Uwagi
1. Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
2. This paper has been completed with the financial support of The National Centre for Research and Development-the grant no.PL-TW4/3/2017.
Kolekcja BazTech
Identyfikator YADDA bwmeta1.element.baztech-1ffad900-39df-4323-8e27-7a8cee806276
Identyfikatory
DOI 10.1016/j.opelre.2019.07.003