Narzędzia help

Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
next last
cannonical link button

http://yadda.icm.edu.pl:80/baztech/element/bwmeta1.element.baztech-1df699cc-343e-4d6b-8935-e1005e877fdc

Czasopismo

Archives of Metallurgy and Materials

Tytuł artykułu

First observation of vertically aligned cesium doped ZnO nanorods as an efficient electron transporter in polymer solar cell

Autorzy Ahmadi, M.  Rashidi Dafeh, S.  Ghazanfarpour, S.  Khanzadeh, M. 
Treść / Zawartość
Warianty tytułu
Języki publikacji EN
Abstrakty
EN Single crystalline cesium doped ZnO nanorods with homogeneous size and shape were grown hydrothermally on ITO substrates that are presented in our previous work. According to the previous work, XRD analysis showed that cesium doped ZnO nanorods are wurtzite single crystals and are grown preferentially along the c-axis. Also, the electrical conductivity of doped ZnO showed higher values for the 1% cesium, which confirmed incorporation of the cesium dopant. Cesium doped ZnO nanorods are suitable candidates for applications in solar cells. So, in this research, we employed cesium doped ZnO nanorods with the different dopant concentration in inverted polymer solar cell. By comparing the effect of doped ZnO nanorods with diverse dopant concentration (0, 0.5, 1.0, 1.5 and 2%) on the performance of devices, 1.0% cesium doped ZnO was found as the most effective doping level among the selected doping concentrations. Also, using 1.0% cesium doped ZnO nanorods, Jsc of 8.21 mA/cm2, Voc of 0.541V and Fill Factor of 63.01% were achieved, which led to power conversion efficiency of 2.80%.
Słowa kluczowe
EN inverted polymer solar cell   Cs doped ZnO nanorod   electron transporter  
Wydawca Polish Academy of Sciences, Committee of Metallurgy, Institute of Metallurgy and Materials Science
Czasopismo Archives of Metallurgy and Materials
Rocznik 2018
Tom Vol. 63, iss. 4
Strony 1571--1574
Opis fizyczny Bibliogr. 27 poz., rys., tab.
Twórcy
autor Ahmadi, M.
  • Vali-e-Asr University of Rafsanjan, Department of Physics, Faculty of Science, Rafsanjan, Iran, m.ahmadi@vru.ac.ir
autor Rashidi Dafeh, S.
  • Vali-e-Asr University of Rafsanjan, Department of Physics, Faculty of Science, Rafsanjan, Iran
autor Ghazanfarpour, S.
  • Vali-e-Asr University of Rafsanjan, Department of Physics, Faculty of Science, Rafsanjan, Iran
autor Khanzadeh, M.
  • Vali-e-Asr University of Rafsanjan, Department of Physics, Faculty of Science, Rafsanjan, Iran
Bibliografia
[1] S. H. Park et al., Nat. Photonics 3, 297-302 (2009).
[2] L. Gang et al., Nat. Mater. 4, 864-868 (2005).
[3] S. Günes, H. Neugebauer, N. S. Sariciftci, Chem. Rev. 107, 1324-1338 (2007).
[4] C. J. Brabec, S. Gowrisanker, J. J. M. Halls, D. Laird, S. Jia, S. P. Williams, Adv. Mater. 22, 3839-3858 (2010).
[5] L. M. Chen, Z. Hong, L. Gang, Y. Yang, Adv. Mater. 21, 1434-1449 (2009).
[6] K. Norrman, S. A. Gevorgyan, F. C. Krebs, ACS Appl. Mater. Interfaces 1, 102-112 (2009).
[7] M. P. D. Jong, L. J. V. IJzendoorn, M. J. D. Voigt, Appl. Phys. Lett. 77, 2255-2257 (2000).
[8] B. Paci et al., Appl. Phys. Lett. 87, 194110-194110-3 (2005).
[9] G. K. Mor, Appl. Phys. Lett. 91, 152111-152111-3 (2007).
[10] K. Lee, J. Y. Kim, S. H. Park, S. H. Kim, S. Cho, A. J. Heeger, Adv. Mater. 19, 2445-2449 (2007).
[11] C. Waldauf, Appl. Phys. Lett. 89, 233517(1-3) (2006).
[12] A. K. K. Kyaw, X. W. Sun, C. Y. Jiang, D. L. Kwong, Appl. Phys. Lett. 93, 221107 (1-3) (2008).
[13] T. Kuwabara, T. Nakashima, T. Yamaguchi, K. Takahashi, Org. Electron. 13, 1136-1140 (2012).
[14] P. D. Bruyn, D. J. D. Moet, P. W. M. Blom, Org. Electron. 11, 1419-1422 (2010).
[15] K. Ellmer, J. Phys. D: Appl. Phys. 34, 3097-3108 (2001).
[16] S. Yanming, H. S. Jung, J. T. Christopher, S. Jason, J. H. Alan, Adv. Mater. 23, 1679-1683 (2011).
[17] J. Wan, L. Hui, K. Chen, Mater. Chem. Phys. 114, 30-32 (2009).
[18] S. Salari, M. Ahmadi, K. Mirabbaszadeh, Electron. Mater. Lett. 10 (1), 13-20 (2014).
[19] T. Stubhan, H. Oh, L. Pinna, J. Krantz, I. Litzov, C. J. Brabec, Org Electron. 12, 1539-1543 (2011).
[20] M. Ahmadi, S. Rashidi Dafeh, Indian. J. Phys. 90, 895-901 (2016).
[21] M. Ahmadi, K. Mirabbaszadeh, S. Salari, H. Fatehy, Electron. Mater. Lett. 10 (5), 951-956 (2014).
[22] K. Mirabbaszadeh, M. Ahmadi, M. Khosravi, R. Mokhtari, S. Salari, J. Inorg. Organomet. Polym. 23 (6), 1219-1225 (2013).
[23] S. Nobuyuki, C. C. Hsuan, K. W. Lek, Y. Yang, Org Electron. 10, 1473-1477 (2009).
[24] J. S. Huang, C. Y. Chou, M. Y. Liu, K. H. Tsai, W. H. Lin, C. F. Lin, Org. Electron. 10, 1060-1065 (2009).
[25] M. Ahmadi, S. Rashidi Dafeh, Chin. Phys. B 24 (11), 11723-(1-6) (2015).
[26] M. Ahmadi, K. Mirabbaszadeh, M. Ketabchi, Electron. Mater. Lett. 9 (6), 729-734 (2013).
[27] M. J. Alam, D. C. Cameron, J. Vac. Sci. Technol. 19, 1642-1646 (2001).
Uwagi
EN 1. PACS no: 71.20.RV, 72.80.Le, 73.21.Ac, 73.63.Bd.
PL 2. Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Kolekcja BazTech
Identyfikator YADDA bwmeta1.element.baztech-1df699cc-343e-4d6b-8935-e1005e877fdc
Identyfikatory
DOI 10.24425/amm.2018.125079