PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Phenol and methylene blue photodegradation over Ti/SBA-15 materials under uv light

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Ordered SBA-15 mesoporous silica supports have been synthesized and used for incorporation of titanium with different Ti/Si weight ratio via incipient wetness impregnation. Titanium tetraisopropoxide (TTIP) was used as a source of Ti. Obtained catalysts were characterized to investigate the chemical framework and morphology by nitrogen sorption measurements, powder X-ray diffraction (XRD), X-ray fluorescence elemental analysis (XRF), transmission electron microscopy (TEM), UV-Vis diffuse reflectance spectroscopy (UV-Vis DRS) and Fourier transform infrared photoacoustic spectroscopy (FT-IR/PAS). The photocatalytic degradation of phenol and methylene blue water solutions were selected as a probe reactions to the photoactivity test of prepared samples and to verify the potential application of these materials for water purification. Experimental results indicate that the photocatalytic activity of Ti/Si mixed materials depends on the adsorption ability of composites and the photocatalytic activity of the titanium oxide.
Słowa kluczowe
Rocznik
Strony
30--38
Opis fizyczny
Bibliogr. 37 poz., rys., tab.
Twórcy
autor
  • University of Maria Curie-Sklodowska, Faculty of Chemistry, Departament of Chemical Technology, pl. Marii Curie-Skłodowskiej 3, 20-031 Lublin, Poland
  • University of Maria Curie-Sklodowska, Faculty of Chemistry, Departament of Chemical Technology, pl. Marii Curie-Skłodowskiej 3, 20-031 Lublin, Poland
autor
  • University of Maria Curie-Sklodowska, Faculty of Chemistry, Departament of Chemical Technology, pl. Marii Curie-Skłodowskiej 3, 20-031 Lublin, Poland
  • University of Maria Curie-Sklodowska, Faculty of Chemistry, Departament of Chemical Technology, pl. Marii Curie-Skłodowskiej 3, 20-031 Lublin, Poland, janusz.ryczkowski@umcs.eu
Bibliografia
  • 1. Oller, I., Gernjak, W., Maldonado, M.I., Perez-Estrada, L.A., Sanchez-Perez, J.A. & Malato, S. (2006). Solar photocatalytic degradation of some hazardous water-soluble pesticides at pilot-plant scale. J. Hazard. Mater. 138, 507-517. DOI: 10.1016/j. jhazmat.2006.05.075.
  • 2. Parra, S., Sarria, V., Malato, S., Peringer, P. & Pulgarin, C. (2000). Photochemical versus coupled photochemical-biological flow system for the treatment of two biorecalcitrant herbicides: metobromuron and isoproturon. Appl. Catal. B: Environ. 27, 153-168. DOI: 10.1016/S0926-3373(00)00151-X.
  • 3. Gogate, P.R. & Pandit, A.B. (2004). A review of imperative technologies for wastewater treatment I: oxidations technologies at ambient conditions. Adv. Environ. Res. 8, 501-551. DOI: 10.1016/S1093-0191(03)00032-7.
  • 4. Kitano, M., Matsuoka, M., Ueshima, M. & Anpo, M. (2007). Recent developments in titanium oxide-based photocatalysts. Appl. Catal. A: Gen. 325, 1-14. DOI: 10.1016/j. apcata.2007.03.013.
  • 5. Rawat, J., Rana, S., Srivastava, R. & Misra, R.D.K. (2007). Antimicrobial activity of composite nanoparticles consisting of titania photocatalytic shell and nickel ferrite magnetic core. Mater. Sci. Eng. C 27, 540-545. DOI: 10.1016/j.msec.2006.05.021.
  • 6. Sarkar, S., Das, R., Choi, H. & Bhattacharjee, C. (2014). Involvement of process parameters and various modes of application of TiO2 nanoparticles in heterogeneous photocatalysis of pharmaceutical wastes - a short review. RSC. Adv. 4, 57250-57266. DOI: 10.1039/C4RA09582K.
  • 7. Legrini, O., Oliveros, E. & Braun, A.M. (1993). Photochemical processes for water treatment. Chem. Rev. 93(2), 671-698. DOI: 10.1021/cr00018a003.
  • 8. Yang, H., Deng, Y. & Du, C. (2009). Synthesis and optical properties of mesoporous MCM-41 containing doped TiO2 nanoparticles. Colloids Surf. A: Physicochem. Eng. Aspects 339, 111--117. DOI: 10.1016/j.colsurfa.2009.02.005.
  • 9. Yan, W., Chen, B., Mahurin, S.M., Hagaman, E.W., Dai, S. & Overbury, S.H. (2004). Surface sol-gel modification of mesoporous silica materials with TiO2 for the assembly of ultrasmall gold nanoparticles. J. Phys. Chem. B 108(9), 2793-2796. DOI: 10.1021/jp037713z.
  • 10. Hanprasopwattana, A., Srinivasan, S., Sault, A.G. & Datye, A.K. (1996). Titania coatings on monodisperse silica spheres (characterization using 2-propanol dehydratation and TEM). Langmuir 12(13), 3173-3179. DOI: 10.1021/la950808a.
  • 11. Hsien, Y.H., Chang, C.F., Chen, Y.H. & Cheng, S. (2001). Photodegradation of aromatic pollutants in water over TiO2 supported on molecular sieves. Appl. Catal. B: Environ. 31, 241-249. DOI: 10.1016/S0926-3373(00)00283-6.
  • 12. Bhaumik, A. & Tatsumi, T. (2000). Organically Modified Titanium-Rich Ti-MCM-41, Effi cient Catalysts for Epoxidation Reactions. J. Catal. 189, 31-39. DOI: 10.1006/jcat.1999.2690.
  • 13. Segura, Y., Cool, P., Van Der Voort, P., Mees, F., Meynen, V. & Vansant, E.F. (2004). TiOx-VOx mixed oxides on SBA-15 support prepared by the designed dispersion of acetylacetonate complexes: spectroscopic study of the reaction mechanisms. J. Phys. Chem. B 108, 3794-3800. DOI: 10.1021/jp036259w.
  • 14. Zhao, D.Y., Huo, Q., Feng, J., Chmelka, B.F. & Stucky, G.D. (1998). Nonionic triblock and star diblock copolymer and oligomeric surfactant syntheses of highly ordered, hydrothermally stable, mesoporous silica structures. J. Am. Chem. Soc. 120(24), 6024-6036. DOI: 10.1021/ja974025i.
  • 15. Sing, K.S.W., Everett, D.H., Haul, R.A.W., Moscow, L., Pierotti, R.A., Rouqerol, J. & Siemieniewska, T. (1985). Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. Pure Appl. Chem. 57, 603-619. DOI: 10.1351/pac198557040603.
  • 16. Busuioc, A.M., Meynen, V., Beyers, E., Mertens, M., Cool, P., Bilba, N. & Vansant, E.F. (2006). Structural features and photocatalytic behaviour of titania deposited within the pores of SBA-15. Appl. Catal. A: Gen. 312, 153-164. DOI: 10.1016/j. apcata.2006.06.043.
  • 17. Tuel, A. & Hubert-Pfalzgraf, L.G. (2003). Nanometric monodispersed titanium oxide particles on mesoporous silica: synthesis, characterization, and catalytic activity in oxidation reactions in the liquid phase. J. Catal. 217, 343-353. DOI: 10.1016/S0021-9517(03)00078-2. .
  • 18. Newalkar, B.L., Olanrewaju, J. & Komarneni, S. (2001). Direct synthesis of titanium substituted mesoporous SBA-15 molecular sieve under microwave-hydrothermal conditions. Chem. Mater. 13(2), 552-557. DOI: 10.1021/cm000748g.
  • 19. Zhao, D., Feng, J., Huo, Q., Melosh, N., Fredrickson, G.H., Chmelka, B.F. & Stucky, G.D. (1998). Triblock Copolymer Syntheses of Mesoporous Silica with Periodic 50 to 300 Angstrom Pores. Science 279, 548-552. DOI: 10.1126/science.279.5350.548.
  • 20. Ding, H., Sun, H. & Shan, Y. (2005). Preparation and characterization of mesoporous SBA-15 supported dye-sensitized TiO2 photocatalyst. J. Photochem. Photobiol. A: Chem. 169, 101-107. DOI: 10.1016/j.jphotochem.2004.04.015.
  • 21. Qiao, W.T., Zhou, G.W., Zhang, X.T. & Li, T.D. (2009). Preparation and photocatalytic activity of highly ordered mesoporous TiO2-SBA-15. Mater. Sci. Eng. C 29, 1498-1502. DOI: 10.1016/j.msec.2008.12.010.
  • 22. Mazaj, M., Stevens, W.J.J., Zabukovec Logar, N., Ristic, A., Novak Tusar, N., Arcon, I., Daneu, N., Meynen, V., Cool, P., Vansant, E.F. & Kaucic, V. (2009). Synthesis and structural investigations on aluminum-free Ti-Beta/SBA-15 composite. Micropor. Mesopor. Mater. 117, 458-465. DOI: 10.1016/j.micromeso.2008.07.025.
  • 23. Henglein, A. (1989). Small-particle research: physicochemical properties of extremely small colloidal metal and semiconductor particles. Chem. Rev. 89(8), 1861-1873. DOI: 10.1021/cr00098a010.
  • 24. Capel-Sanchez, M.C., Campos-Martin, J.M., Fierro, J.L.G., de Frutos, M.P. & Padilla Polo, A. (2000). Effective alkene epoxidation with dilute hydrogen peroxide on amorphous silica-supported titanium catalysts. Chem. Commun. 855-856. DOI: 10.1039/B000929F.
  • 25. Wróblewska, A. & Makuch, E. (2013). Studies on the deactivation of Ti-MCM-41 catalyst in the process of allyl alcohol epoxidation. Pol. J. Chem. Technol. 4(15), 111-115. DOI: 10.2478/pjct-2013-0078.
  • 26. Madhusudan Reddy K., Manorama S.V. & Ramachandra Reddy A. (2003). Bandgap studies on anatase titanium dioxide nanoparticles. Mater. Chem. Phys. 78, 239-245. DOI: 10.1016/ S0254-0584(02)00343-7.
  • 27. Bahnemann, M.M., Krishna, K.M., Soga, T., Jimbo, T. & Umeno, M. (1999). Optical properties and X-ray photoelectron spectroscopic study of pure and Pb-doped TiO2 thin films. J. Phys. Chem. Sol. 60, 201-210. DOI: 10.1016/S0022-3697(98)00264-9.
  • 28. Rosencwaig, A. (1980). Photoacoustics and photoacoustic spectroscopy. New York, John Wiley & Sons, Inc.
  • 29. Nawrocki, J. (1997). The silanol group and its role in liquid chromatography. J. Chromatogr. A 779, 29-71. DOI: 10.1016/ S0021-9673(97)00479-2.
  • 30. Xie, Y. & Yuan, C. (2003). Visible-light responsive cerium ion modified titania sol and nanocrystallites for X-3B dye photodegradation. Appl. Catal. B: Environ. 46, 251-259. DOI: 10.1016/S0926-3373(03)00211-X.
  • 31. Yang, J., Zhang, J., Zhu, L., Chen, S., Zhang, Y., Tang, Y., Zhu, Y. & Li, Y. (2006). Synthesis of nano titania particles embedded in mesoporous SBA-15: Characterization and photocatalytic activity. J. Hazard. Mater. B 137, 952-958. DOI: 10.1016/j.jhazmat.2006.03.017.
  • 32. Sun, Z., Bai, C., Zheng, S., Yang. X. & Frost, R.L. (2013). A comparative study of different porous amorphous silica minerals supported TiO2 catalysts. Appl. Catal. A: Gen. 458, 103-110. DOI: 10.1016/j.apcata.2013.03.035.
  • 33. Chen, D. & Ray, A.K. (1999). Photocatalytic kinetics of phenol and its derivatives over UV irradiated TiO2. Appl. Catal. B: Environ. 23, 143-157. DOI: 10.1016/S0926-3373(99)00068-5.
  • 34. Grabowska, E., Reszczyńska, J. & Zaleska, A. (2012). Mechanism of phenol photodegradation in the presence of pure and modified-TiO2: A review. Water Res. 46, 5453-5471. DOI: 10.1016/j.watres.2012.07.048.
  • 35. Turchi, C.S. & Ollis, D.F. (1990). Photocatalytic degradation of organic-water contaminants mechanisms involving hydroxyl radical attack. J. Catal. 122, 178-192. DOI: 10.1016/0021-9517(90)90269-P.
  • 36. Zhang, Z., Wang, C.C., Zakaria, R. & Ying, J.Y. (1998). Role of particle size in nanocrystalline TiO2-photocatalysts. J. Phys. Chem. B 102(52), 10871-10878. DOI: 10.1021/jp982948+.
  • 37. Guo, Z., Ma, R. & Li, G. (2006). Degradation of phenol by nanomaterials TiO2 in wastewater. Chem. Eng. J. 119, 55-59. DOI: 10.1016/j.cej.2006.01.017.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1ceda8aa-43ba-458f-b290-83e6c085e8b3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.