PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Neural Network Identifier of a Four-wheeled Mobile Robot Subject to Wheel Slip

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper presents a sequential neural network (NN) identification scheme for the four-wheeled mobile robot subject to wheel slip. The sequential identification scheme, different from conventional methods of optimization of a cost function, attempts to ensure stability of the overall system while the neural network learns the nonlinearities of the mobile robot. An on-line weight learning algorithm is developed to adjust the weights so that the identified model can adapt to variations of the characteristics and operating points in the four-wheeled mobile robot. The proposed identification system that can guarantee stability is derived from the Lyapunov stability theory. Computer simulations have been conducted to illustrate the performance of the proposed solution by a series of experiments on the emulator of the wheeled mobile robot.
Twórcy
autor
autor
  • Industrial Research Institute for Automation and Measurements PIAP, Warsaw, 02‑486, Poland, mtrojnacki@piap.pl
Bibliografia
  • [1] Astrom K. J., Wittenmark B., Adaptive control, Addison-Wesley, New York, 1989.
  • [2] Giergiel J., Hendzel Z., Zylski, W., Modeling and Control of Wheeled Mobile Robots, PWN, Warsaw (2013) (in Polish).
  • [3] Hendzel Z., Adaptive Critic Neural Networks For Identification of Wheeled Mobile Robot, Lecture Notes in Artificial Intelligence, Springer-Verlag, 2006, 778–786.
  • [4] Hendzel Z., Trojnacki M., “Neural Network Control of a Four-Wheeled Mobile Robot Subject to Wheel Slip”. In: Mechatronics: Ideas for Industrial Applications, chapter 19, series: Advances in Intelligent Systems and Computing, Springer International Publishing, 2015, 187–201. DOI:http://dx.doi.org/10.1007/978-3-319-10990-9_19.
  • [5] Hunt K. J., Sbarbaro D., Zbikowski R., Gawthrop P.J., “Neural networks for control systems-A survey”, Automatica, vol. 28, no. 6, 1992, 1083–1112. DOI: http://dx.doi.org/10.1016/0005-1098(92)90053-I.
  • [6] Jooa Y. H., Hwangb H. S., Kimc K. B., Woo K. B.,“Fuzzy system modeling by fuzzy partition and GA hybrid schemes”, Fuzzy Sets and Systems, vol. 86, no. 3, 1997, 279–288. DOI: http://dx.doi.org/10.1016/S0165-114(95)00414-9.
  • [7] Levis F. L., Liu K., Yesildirek A., “Neural net robot controller with guaranteed tracking performance”, IEEE Transaction on Neural Networks, vol. 6, No. 3,1995, 703–715.
  • [8] Lichota P., Lasek M., “Maximum Likelihood Estimation: A method for flight dynamics –Angle of attack estimation”. In: Proceedings of the 14th International Carpathian Control Conference (ICCC), IEEE, Rytro, Poland, 2013,218–221. DOI: http://dx.doi.org/10.1109/CarpathianCC.2013.6560541.
  • [9] Liu G.P., Nonlinear identification and control, series: Advances in Industrial Control, Springer-Verlag, 2001. DOI: http://dx.doi.org/10.1007/978-1-4471-0345-5.
  • [10] Narendra K. S., Parthasrathy K., “Identification and control of dynamical systems using neural networks”, IEEE Transaction on Neural Networks, vol. 1, no. 1, 1990, 4–27. DOI: http://dx.doi.org/10.1109/72.80202.
  • [11] Nawrocki M., Burghardt A., Hendzel Z.,“Identyfikacja parametryczna mobilnego robota Amigobot” (The parametric identicication of mobile robot Amigobot), Modelowanie inżynierskie, no. 42, 2011, 289–294. (in Polish)
  • [12] Sadegh N., “A perceptron Network for functional identification and control of nonlinear systems”, IEEE Transaction on Neural Networks, vol. 4, no. 6, 1993, 982–988.
  • [13] Soderstrom T., Stoica P., “System identification”, Journal of Dynamic Systems, Measurement, and Control, vol. 115, no. 4, 1993, 739–740. DOI:http://dx.doi.org/10.1115/1.2899207.
  • [14] Trojnacki M., P. Dąbek, J. Kacprzyk and Z. Hendzel, “Trajectory Tracking Control of a Four-Wheeled Mobile Robot with Yaw Rate Linear Controller, Recent Advances in Automation, Robotics and Measuring Techniques, Series: Advances in Intelligent Systems and Computing, vol. 267, Springer International Publishing, 2014, 507-521.
  • [15] Trojnacki M., “Dynamics Model of a Four-wheeled Mobile Robot for Control Applications – a Three-Case Study”, IEEE Intelligent Systems IS’14, Series: Advances in Intelligent Systems and Computing, Springer International Publishing, 2014, 99–116.
  • [16] Trojnacki M., “Analysis of Influence of Drive System Configurations of a Four Wheeled Robot on its Mobility”, Journal of Automation, Mobile Robotics and Intelligent Systems, vol. 6, no. 4, 2012, 65–70
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1cbff2d2-d7d5-4fd0-b708-ecc6407979ec
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.