PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Fabrication of Pure Electrospun Materials from Hyaluronic Acid

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Materiały z kwasu hialuronowego otrzymywane metodą elektroprzędzenia przeznaczone do zastosowań w inżynierii tkankowej
Języki publikacji
EN
Abstrakty
EN
The aim of the research was to develop optimal conditions for manufacturing materials based on hyaluronic acid by the electrospun method. The studies were composed of three stages: the process of selection of the optimal solvent (mixture of solvents), the molecular weight of hyaluronic acid, and the concentration of biopolymer in the spinning solution. The influence of variable parameters on the rheological properties of the spinning solutions and electrospinning trails was tested. Depending on the electrospinning regime applied, the fibers obtained were characterised by a diameter of the order of 20 to 400 nm. As a result of the development works presented, an optimal molecular weight of the polymer, its concentration and system of solvents were determined, together with process parameters, ensuring a stable electrospinning process and relatively homogeneous nanofibers. Additionally studies on the residues of solvents used during electrosun formation were done and parameters of drying of the final materials were examined. This approach (verification of the presence of organic solvent residue in the nanofibrous formed) is important for the suitability of nanofibres as scaffolds for regenerative medicine. This study provides an opportunity for the understanding and identification of process parameters, allowing for predictable manufacturing nanofibers based on natural biopolymers, which makes it tremendously beneficial in terms of customisation.
PL
Celem badań było opracowanie optymalnych warunków otrzymywania nanowłókien z kwasu hialuronowego. Badania obejmowały następujące etapy realizacji pracy: proces doboru optymalnego rozpuszczalnika dla polimeru oraz dobór masy cząsteczkowej kwasu hialuronowego. Zbadano właściwości reologiczne roztworów oraz wpływ zmiennych parametrów procesowych na strukturę mikroskopową włókien. W zależności od zastosowanych parametrów elektroprzędzenia otrzymane włókna charakteryzowały się średnią rzędu od 20 do 400 nm. Dodatkowo przeprowadzono badania dotyczące pozostałości rozpuszczalników stosowanych w przygotowaniu roztworów przędzalniczych, co jest istotne z punktu widzenia wykorzystania tych materiałów w obrębie medycyny regeneracyjnej.
Rocznik
Strony
45--52
Opis fizyczny
Bibliogr. 25 poz., rys., tab.
Twórcy
  • Lodz University of Technology, Faculty of Material Technologies and Textile Design, Department of Material and Commodity Sciences and Textile Metrology, Zeromskiego Str. 116, 90-924 Lodz, Poland
  • Lodz University of Technology, Faculty of Material Technologies and Textile Design, Department of Material and Commodity Sciences and Textile Metrology, Zeromskiego Str. 116, 90-924 Lodz, Poland
  • Lodz University of Technology, Faculty of Material Technologies and Textile Design, Department of Material and Commodity Sciences and Textile Metrology, Zeromskiego Str. 116, 90-924 Lodz, Poland
autor
  • Lodz University of Technology, Faculty of Material Technologies and Textile Design, Department of Material and Commodity Sciences and Textile Metrology, Zeromskiego Str. 116, 90-924 Lodz, Poland
autor
  • Lodz University of Technology, Faculty of Chemistry, Institute of Organic Chemistry, Zeromskiego Str. 116, 90-924 Lodz Poland
  • Lodz University of Technology, Faculty of Chemistry, Institute of Organic Chemistry, Zeromskiego Str. 116, 90-924 Lodz Poland
  • Lodz University of Technology, Faculty of Material Technologies and Textile Design, Department of Material and Commodity Sciences and Textile Metrology, Zeromskiego Str. 116, 90-924 Lodz, Poland
autor
  • Lodz University of Technology, Faculty of Material Technologies and Textile Design, Department of Material and Commodity Sciences and Textile Metrology, Zeromskiego Str. 116, 90-924 Lodz, Poland, maciej.bogun@p.lodz.pl
Bibliografia
  • 1. Vincent JFV, Bogatyreva OA, Bogatyrev NR, Bowyer A, Pahl AK., Biomimetics: its practice and theory. Interface Journal of Royal Society 2006; 3(9), DOI: 10.1098/rsif.2006.0127
  • 2. Shimomura M. The New Trends in Next Generation Biomimetics Material Technology: Learning from Biodiversity. Science & Technology Trends Quarterly Review 2010; 037: 53-75.
  • 3. Sanchez C, Arribart H, Guille MMG. Biomimetism and bioinspiration as tools for the design of innovative materials and systems. Nature Materials 2005; 4(4) 12: 277-288.
  • 4. Dhandayuthapani B, Yoshida Y, Maekawa T, Kumar D S. Polymeric Scaffolds in Tissue Engineering Application: A Review. International Journal of Polymer Science 2011, Article ID 290602, http://dx.doi.org/10.1155/2011/290602
  • 5. Fa-Ming C and Xiaohua L. Advancing biomaterials of human origin for tissue engineering, Progress in Polymer Scienc, 2016; 53(86–168): 86–168. http://dx.doi.org/10.1016/j.progpolymsci.2015.02.004
  • 6. Kogan G, Soltés L, Stern R and Gemeiner P. Hyaluronic acid: a natural biopolymer with a broad range of biomedical and industrial applications. Biotechnology Letters 2007; 29: 17–25 DOI:10.1007/s10529-006-9219-z
  • 7. Ivanova EP, Bazaka K, Crawford RJ. New Functional Biomaterials for Medicine and Healthcare. Woodhead Publishing 2013; p. 52-53, ISBN: 9781782422662 DOI: https://doi.org/10.1557/mrs.2014.209
  • 8. Papakonstantinou E, Roth M and Karakiulakis G. Hyaluronic acid: A key molecule in skin aging. Dermatoendocrinology 2012; 4(3): 253–258, DOI: 10.4161/derm.21923
  • 9. Olczyk P, Komosińska-Vassev K, Winsz-Szczotka K, Kuźnik-Trocha KK, Olczyk K. Hialuronian – struktura, metabolizm, funkcje i rola w procesach gojenia ran. Postępy Higieny i Medycyny Doświadczalnej 2008; 62: 651-659, e-ISSN 1732-2693.
  • 10. Tucker N, Stanger JJ, Staiger MP, Razzaq H and Hofman K. The history of the science and technology of electrospinning from 1600 to 1995. Journal of Engineered Fibers and Fabrics 2012; 7(3): 50–131.
  • 11. Ramakrishna S. An introduction to electrospinning and nanofibres. World Scientific Publishing Company, 2005.
  • 12. Eric K. Brenner, Jessica D. Schiffman, Ebony A. Thompson, Laura J. Toth, Caroline L. Schauer, Electrospinning of hyaluronic acid nanofibers from aqueous ammonium solutions. Carbohydrate 2011; Polymers 87: 926–929 http://dx.doi.org/10.1016/j.carbpol.2011.07.033.
  • 13. Ji Y, Ghosh K, Shu X Z, Li B, Sokolov J C, Prestwich GD, Clark RAF, Rafailovich M H. Electrospun three-dimensional hyaluronic acid nanofibrous scaffolds. Biomaterials 2006; 27: 3782–3792 DOI: 10.1016/j.biomaterials.2006.02.037
  • 14. Liu Y, Ma G, Fang D, Xu J, Zhang H and Nie J. Effects of solution properties and electric field on the electrospinning of hyaluronic acid. Carbohydrate Polymers 2010; 83: 1011–1015 http://dx.doi.org/10.1016/j.carbpol.2010.08.061
  • 15. Wu J and Hong Y. Enhancing cell infiltration of electrospun fibrous scaffolds in tissue regeneration. Bioactive Materials 2016; 1(1): 56–64 http://dx.doi.org/10.1016/j.bioactmat.2016.07.001
  • 16. Dhandayuthapani B, Yoshida Y, Maekawa T and Sakthi Kumar D.. Polymeric Scaffolds in Tissue Engineering Application: A Review. International Journal of Polymer Science, Article ID 290602, 2011; p. 19 http://dx.doi.org/10.1155/2011/290602
  • 17. Pabjańczyk-Wlazło E, Król P, Chrzanowski M, Puchalski M, Krucińska I, Szparaga G and Boguń M. The selection of the polymer-solvent system and process conditions for electrospinning of hyaluronic acid. In: Proceedings of BioNanoMed 2015, 6th International Congress of Nanotechnology in Medicine and Biology, 8-10 April 2015, Graz, Austria
  • 18. Biswas SC, Dubreil L and Marion D. Interfacial Behavior of Wheat Puroindolines: Study of Adsorption at the Air–Water Interface from Surface Tension Measurement Using Wilhelmy Plate Method. Journal of Colloid and Interface Science 2001; 244(2): 245–253.
  • 19. Krucińska I, Gliścińska EM and Chrzanowski M.. System for electrospinning fibers. Patent Number EP 2325 355 B1, Poland, 2012 http://dx.doi.org/10.1016/S0032-3861(00)00250-0
  • 20. Vinogradov G V. Structure and rheological properties of polymers. Polymer Mechanics 1975; 11(1): 139–149, DOI: 10.1007/BF00855434.
  • 21. Deitzel JM, Kleinmeyer J, Harris D and Tan NCB. The effect of processing variables on the morphology of electrospun nanofibers and textiles. Polymer 2001; 42: 261-272.
  • 22. Bhardwaj N, Kundu SC. Electrospinning: a fascinating fiber fabrication technique, Biotechnology Advances, 2010; 28(3), 325–347 http://dx.doi.org/10.1016/j.biotechadv.2010.01.004
  • 23. Larrondo L and Manley R.. Electrostatic fiber spinning from polymer melts. II. Examination of the flow field in an electrically driven jet. Journal of Polymer Science Part B - Polymer Physics 1981; 19: 921-932 DOI 10.1002/pol.1981.180190602
  • 24. Larrondo L and Manley R. Electrostatic fiber spinning from polymer melts. III. Electrostatic deformation of a pendant drop of polymer melt. Journal of Polymer Science Part B – Polymer Physics 1981; 19: 933-940 DOI 10.1002/pol.1981.180190603
  • 25. Shanmugasundaram N, Ravichandran P, Neelakanta RP, Ramamurty N, Pal S and Panduranga R. Collagen-Chitosan polymeric scaffolds for the in vitro culture of human epidermoid carcinoma cells. Biomaterials 2001; 22, 1943–1951 http://dx.doi.org/10.1016/S0142-9612(00)00220-9
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1c84afba-e6db-4256-ad93-eef33aae17a5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.