Narzędzia help

Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
first previous next last
cannonical link button

http://yadda.icm.edu.pl:80/baztech/element/bwmeta1.element.baztech-192337be-5109-445c-a768-f0ffe31fc01e

Czasopismo

Biocybernetics and Biomedical Engineering

Tytuł artykułu

In-silico evaluation of left ventricular unloading under varying speed continuous flow left ventricular assist device support

Autorzy Bozkurt, S.  Bozkurt, S. 
Treść / Zawartość http://www.ibib.waw.pl/pl/wydawnictwa/biocybernetics-and-biomedical-enginering-bbe/bbe-tomy http://www.journals.elsevier.com/biocybernetics-and-biomedical-engineering/
Warianty tytułu
Języki publikacji EN
Abstrakty
EN Continuous flow left ventricular assist device (cf-LVAD) operating speed modulation techniques are proposed to achieve different purposes such as improving arterial pulsatility, aortic valve function or ventricular unloading etc. Although it is possible to improve the left ventricular unloading by modulating the operating speed of a cf-LVAD, it is still unclear what type of pump operating mode should be applied to generate a better left ventricular unloading. This study presents a comparison of different heart pump support modes including constant speed support, copulsative and counterpulsative direct cf-LVAD speed modulation and pump flow rate control to regulate the cf-LVAD operating speed. The simulations were performed using a cardiovascular system model, which consists of active left atrium and ventricle, mitral and aortic valve leaflets, circulatory loop and a cf-LVAD. The cf-LVAD was operated between 7500 rpm and 12,500 rpm with 1000 rpm intervals to simulate constant speed support. The same mean pump operating speeds over a cardiac cycle were applied in the direct operating speed modulation for the copulsative and counterpulsative direct speed modulation cf-LVAD support as in the constant speed support while the same pump-output over a cardiac cycle was applied to drive the pump in flow rate controlled copulsative and counterpulsative cf-LVAD support modes as in the constant speed support. Simulation results show that flow rate controlled counterpulsative pump support mode generates lower end-diastolic left ventricular volume and pressure–volume loop area while generating more physiological left ventricular volume signals over a cardiac cycle with respect to the other pump operating modes.
Słowa kluczowe
PL komora serca   komora lewa   cf-LVAD   kontrola szybkości przepływu  
EN left ventricular unloading   cf-LVAD   flow rate control  
Wydawca Nałęcz Institute of Biocybernetics and Biomedical Engineering of the Polish Academy of Sciences
Elsevier
Czasopismo Biocybernetics and Biomedical Engineering
Rocznik 2017
Tom Vol. 37, no. 3
Strony 373--387
Opis fizyczny Biblioge. 62 poz., rys., tab., wykr.
Twórcy
autor Bozkurt, S.
  • University College London, Department of Mechanical Engineering, Torrington Place, London WC1E 7 JE, United Kingdom, s.bozkurt@ucl.ac.uk
autor Bozkurt, S.
Bibliografia
[1] Katz AM. Maladaptive growth in the failing heart: the cardiomyopathy of overload. Cardiovasc Drugs Ther 2002;16:245–9.
[2] Lund LH, Matthews J, Aaronson K. Patient selection for left ventricular assist devices. Eur J Heart Fail 2010;12:434–43. http://dx.doi.org/10.1093/eurjhf/hfq006.
[3] Drakos SG, Terrovitis JV, Anastasiou-Nana MI, Nanas JN. Reverse remodeling during long-term mechanical unloading of the left ventricle. J Mol Cell Cardiol 2007;43:231–42. http://dx.doi.org/10.1016/j.yjmcc.2007.05.020.
[4] Dandel M, Weng Y, Siniawski H, Stepanenko A, Krabatsch T, Potapov E, et al. Heart failure reversal by ventricular unloading in patients with chronic cardiomyopathy: criteria for weaning from ventricular assist devices. Eur Heart J 2011;32:1148–60. http://dx.doi.org/10.1093/eurheartj/ehq353.
[5] Burkhoff D, Klotz S, Mancini DM. LVAD-induced reverse remodeling: basic and clinical implications for myocardial recovery. J Card Fail 2006;12:227–39. http://dx.doi.org/10.1016/j.cardfail.2005.10.012.
[6] Klotz S, Deng MC, Stypmann J, Roetker J, Wilhelm MJ, Hammel D, et al. Left ventricular pressure and volume unloading during pulsatile versus nonpulsatile left ventricular assist device support. Ann Thorac Surg 2004;77:143–9.
[7] de Jonge N, Kirkels H, Lahpor JR, Klöpping C, Hulzebos EJ, de la Rivière AB, et al. Exercise performance in patients with end-stage heart failure after implantation of a left ventricular assist device and after heart transplantation: an outlook for permanent assisting? J Am Coll Cardiol 2001;37:1794–9.
[8] Loyaga-Rendon RY, Plaisance EP, Arena R, Shah K. Exercise physiology, testing, and training in patients supported by a left ventricular assist device. J Heart Lung Transplant Off Publ Int Soc Heart Transpl 2015;34:1005–16. http://dx.doi.org/10.1016/j.healun.2014.12.006.
[9] Brassard P, Jensen AS, Nordsborg N, Gustafsson F, Møller JE, Hassager C, et al. Central and peripheral blood flow during exercise with a continuous-flow left ventricular assist device: constant versus increasing pump speed: a pilot study. Circ Heart Fail 2011;4:554–60. http://dx.doi.org/10.1161/CIRCHEARTFAILURE.110.958041.
[10] Muthiah K, Robson D, Prichard R, Walker R, Gupta S, Keogh AM, et al. Effect of exercise and pump speed modulation on invasive hemodynamics in patients with centrifugal continuous-flow left ventricular assist devices. J Heart Lung Transplant Off Publ Int Soc Heart Transpl 2015;34:522–9. http://dx.doi.org/10.1016/j.healun.2014.11.004.
[11] Fresiello L, Buys R, Timmermans P, Vandersmissen K, Jacobs S, Droogne W, et al. Exercise capacity in ventricular assist device patients: clinical relevance of pump speed and power. Eur J Cardio-Thorac Surg Off J Eur Assoc Cardio- Thorac Surg 2016;50:752–7. http://dx.doi.org/10.1093/ejcts/ezw147.
[12] Levine BD, Cornwell WK, Drazner MH. Factors influencing the rate of flow through continuous-flow left ventricular assist devices at rest and with exercise. JACC Heart Fail 2014;2:331–4. http://dx.doi.org/10.1016/j.jchf.2014.03.007.
[13] Maciver J, Rao V, Ross HJ. Quality of life for patients supported on a left ventricular assist device. Expert Rev Med Devices 2011;8:325–37. http://dx.doi.org/10.1586/erd.11.9.
[14] Letsou GV, Pate TD, Gohean JR, Kurusz M, Longoria RG, Kaiser L, et al. Improved left ventricular unloading and circulatory support with synchronized pulsatile left ventricular assistance compared with continuous-flow left ventricular assistance in an acute porcine left ventricular failure model. J Thorac Cardiovasc Surg 2010;140:1181–8. http://dx.doi.org/10.1016/j.jtcvs.2010.03.043.
[15] Bozkurt S. Physiologic outcome of varying speed rotary blood pump support algorithms: a review study. Australas Phys Eng Sci Med Support Australas Coll Phys Sci Med Australas Assoc Phys Sci Med 2016;39:13–28. http://dx.doi.org/10.1007/s13246-015-0405-y.
[16] Petukhov DS, Telyshev DV. Control algorithms for rotary blood pumps used in assisted circulation. Biomed Eng 2016;50:157–60. http://dx.doi.org/10.1007/s10527-016-9609-z.
[17] Soucy KG, Giridharan GA, Choi Y, Sobieski MA, Monreal G, Cheng A, et al. Rotary pump speed modulation for generating pulsatile flow and phasic left ventricular volume unloading in a bovine model of chronic ischemic heart failure. J Heart Lung Transpl 2015;34:122–31. http://dx.doi.org/10.1016/j.healun.2014.09.017.
[18] Pirbodaghi T, Weber A, Axiak S, Carrel T, Vandenberghe S. Asymmetric speed modulation of a rotary blood pump affects ventricular unloading. Eur J Cardio-Thorac Surg Off J Eur Assoc Cardio-Thorac Surg 2013;43:383–8. http://dx.doi.org/10.1093/ejcts/ezs299.
[19] Vandenberghe S, Segers P, Antaki JF, Meyns B, Verdonck PR. Hemodynamic modes of ventricular assist with a rotary blood pump: continuous, pulsatile, and failure. ASAIO J Am Soc Artif Intern Organs 1992 2005;51:711–8.
[20] Shi Y, Lawford PV, Hose DR. Numerical modeling of hemodynamics with pulsatile impeller pump support. Ann Biomed Eng 2010;38:2621–34. http://dx.doi.org/10.1007/s10439-010-0001-y.
[21] Umeki A, Nishimura T, Ando M, Takewa Y, Yamazaki K, Kyo S, et al. Alteration of LV end-diastolic volume by controlling the power of the continuous-flow LVAD, so it is synchronized with cardiac beat: development of a native heart load control system (NHLCS). J Artif Organs Off J Jpn Soc Artif Organs 2012;15:128–33. http://dx.doi.org/10.1007/s10047-011-0615-3.
[22] Rüschen D, Prochazka F, Amacher R, Bergmann L, Leonhardt S, Walter M. Minimizing left ventricular stroke work with iterative learning flow profile control of rotary blood pumps 2017;31:444–51. http://dx.doi.org/10.1016/j.bspc.2016.09.001.
[23] Ochsner G, Amacher R, Wilhelm MJ, Vandenberghe S, Tevaearai H, Plass A, et al. A physiological controller for turbodynamic ventricular assist devices based on a measurement of the left ventricular volume. Artif Organs 2014;38:527–38. http://dx.doi.org/10.1111/aor.12225.
[24] Moscato F, Arabia M, Colacino FM, Naiyanetr P, Danieli GA, Schima H. Left ventricle afterload impedance control by an axial flow ventricular assist device: a potential tool for ventricular recovery. Artif Organs 2010;34:736–44. http://dx.doi.org/10.1111/j.1525-1594.2010.01066.x.
[25] Ising M, Warren S, Sobieski MA, Slaughter MS, Koenig SC, Giridharan GA. Flow modulation algorithms for continuous flow left ventricular assist devices to increase vascular pulsatility: a computer simulation study. Cardiovasc Eng Technol 2011;2:90–100. http://dx.doi.org/10.1007/s13239-011-0042-x.
[26] Bozkurt S, van de Vosse FN, Rutten MCM. Aortic valve function under support of a left ventricular assist device: continuous vs dynamic speed support. Ann Biomed Eng 2015;43:1727–37. http://dx.doi.org/10.1007/s10439-014-1204-4.
[27] Cox LGE, Loerakker S, Rutten MCM, De Mol BAJM, Van De Vosse FN. A mathematical model to evaluate control strategies for mechanical circulatory support. Artif Organs 2009;33:593–603. http://dx.doi.org/10.1111/j.1525-1594.2009.00755.x.
[28] Korakianitis T, Shi Y. A concentrated parameter model for the human cardiovascular system including heart valve dynamics and atrioventricular interaction. Med Eng Phys 2006;28:613–28. http://dx.doi.org/10.1016/j.medengphy.2005.10.004.
[29] Munín M, Thierer J, Raggio IM, Goerner MS, Lombardero M, Godia J, et al. Three-dimensional echocardiographic analysis of mitral valve characteristics. Argent J Cardiol 2014;82:297–302. http://dx.doi.org/10.7775/ajc.82.4.3809.
[30] Swanson M, Clark RE. Dimensions and geometric relationships of the human aortic valve as a function of pressure. Circ Res 1974;35:871–82.
[31] De Pater L, Van Den Berg JW. An electrical analogue of the entire human circulatory system. Med Electron Biol Eng 1964;2:161–6.
[32] Shi Y, Brown AG, Lawford PV, Arndt A, Nuesser P, Hose DR. Computational modelling and evaluation of cardiovascular response under pulsatile impeller pump support. Interface Focus 2011;1:320–37. http://dx.doi.org/10.1098/rsfs.2010.0039.
[33] Ciarka A, Van de Veire N. Secondary mitral regurgitation: pathophysiology, diagnosis, and treatment. Heart Br Card Soc 2011;97:1012–23. http://dx.doi.org/10.1136/hrt.2010.219170.
[34] Delgado V, Tops LF, Schuijf JD, de Roos A, Brugada J, Schalij MJ, et al. Assessment of mitral valve anatomy and geometry with multislice computed tomography. JACC Cardiovasc Imaging 2009;2:556–65. http://dx.doi.org/10.1016/j.jcmg.2008.12.025.
[35] Lam CSP, Gona P, Larson MG, Aragam J, Lee DS, Mitchell GF, et al. Aortic root remodeling and risk of heart failure in the Framingham Heart study. JACC Heart Fail 2013;1:79–83. http://dx.doi.org/10.1016/j.jchf.2012.10.003.
[36] Bozkurt S. In-silico modeling of left ventricle to simulate dilated cardiomyopathy and cf-lvad support. J Mech Med Biol 2016;1750034. http://dx.doi.org/10.1142/S0219519417500348.
[37] Sorguven E, Ciblak N, Okyar AF, Akgun MA, Egrican AN, Safak KK, et al. Flow simulation and optimization of a left ventricular assist device. ASME 2007;1401–7. http://dx.doi.org/10.1115/IMECE2007-41747.
[38] Bozkurt S, van Tuijl S, Schampaert S, van de Vosse FN, Rutten MCM. Arterial pulsatility improvement in a feedback-controlled continuous flow left ventricular assist device: an ex-vivo experimental study. Med Eng Phys 2014;36:1288–95. http://dx.doi.org/10.1016/j.medengphy.2014.07.005.
[39] Bhattacharya-Ghosh B, Bozkurt S, Rutten MCM, van de Vosse FN, Díaz-Zuccarini V. An in silico case study of idiopathic dilated cardiomyopathy via a multi-scale model of the cardiovascular system. Comput Biol Med 2014;53:141–53. http://dx.doi.org/10.1016/j.compbiomed.2014.06.013.
[40] Miller LW, Guglin M. Patient selection for ventricular assist devices: a moving target. J Am Coll Cardiol 2013;61:1209–21. http://dx.doi.org/10.1016/j.jacc.2012.08.1029.
[41] Korakianitis T, Shi Y. Numerical comparison of hemodynamics with atrium to aorta and ventricular apex to aorta VAD support. ASAIO J 2007;53:537–48. http://dx.doi.org/10.1097/MAT.0b013e318142bfce.
[42] Pirbodaghi T, Axiak S, Weber A, Gempp T, Vandenberghe S. Pulsatile control of rotary blood pumps: does the modulation waveform matter? J Thorac Cardiovasc Surg 2012;144:970–7. http://dx.doi.org/10.1016/j.jtcvs.2012.02.015.
[43] Blanco PJ, Feijóo RA. A dimensionally-heterogeneous closed-loop model for the cardiovascular system and its applications. Med Eng Phys 2013;35:652–67. http://dx.doi.org/10.1016/j.medengphy.2012.07.011.
[44] Hall JE. Guyton and hall textbook of medical physiology. Philadelphia, PA: Saunders; 2015.
[45] Suga H, Sagawa K, Shoukas AA. Load independence of the instantaneous pressure–volume ratio of the canine left ventricle and effects of epinephrine and heart rate on the ratio. Circ Res 1973;32:314–22.
[46] Vandenberghe S, Segers P, Steendijk P, Meyns B, Dion RAE, Antaki JF, et al. Modeling ventricular function during cardiac assist: does time-varying elastance work? ASAIO 2006;52:4–8. http://dx.doi.org/10.1097/01.mat.0000196525.56523.b8.
[47] Mirsky I, Tajimi T, Peterson KL. The development of the entire end-systolic pressure–volume and ejection fraction-afterload relations: a new concept of systolic myocardial stiffness. Circulation 1987;76:343–56.
[48] Lankhaar J-W, Rövekamp FA, Steendijk P, Faes TJC, Westerhof BE, Kind T, et al. Modeling the instantaneous pressure–volume relation of the left ventricle: a comparison of six models. Ann Biomed Eng 2009;37:1710–26. http://dx.doi.org/10.1007/s10439-009-9742-x.
[49] Bhattacharya-Ghosh B, Schievano S, Díaz-Zuccarini V. A multi-physics and multi-scale lumped parameter model of cardiac contraction of the left ventricle: a conceptual model from the protein to the organ scale. Comput Biol Med 2012;42:982–92. http://dx.doi.org/10.1016/j.compbiomed.2012.07.010.
[50] Ursino M. Interaction between carotid baroregulation and the pulsating heart: a mathematical model. Am J Physiol 1998;275:H1733–47.
[51] Smith BW, Andreassen S, Shaw GM, Jensen PL, Rees SE, Chase JG. Simulation of cardiovascular system diseases by including the autonomic nervous system into a minimal model. Comput Methods Prog Biomed 2007;86:153–60. http://dx.doi.org/10.1016/j.cmpb.2007.02.001.
[52] Stuiver A, Mulder B. Cardiovascular state changes in simulated work environments. Front Neurosci 2014;8. http://dx.doi.org/10.3389/fnins.2014.00399.
[53] Jelenc M, Jelenc B, Vrtovec B, Kneževič I. Mitral regurgitation and axial flow left ventricular assist device: a computer simulation study. ASAIO J 2013;59:405–9. http://dx.doi.org/10.1097/MAT.0b013e31829ff57d.
[54] May-Newman K, Fisher B, Hara M, Dembitsky W, Adamson R. Mitral valve regurgitation in the LVAD-assisted heart studied in a mock circulatory loop. Cardiovasc Eng Technol 2016;7:139–47. http://dx.doi.org/10.1007/s13239-016-0261-2.
[55] Nosé Y. Design and development strategy for the rotary blood pump. Artif Organs 1998;22:438–46.
[56] Pennings KAMA, Martina JR, Rodermans BFM, Lahpor JR, van de Vosse FN, de Mol BAJM, et al. Pump flow estimation from pressure head and power uptake for the HeartAssist5, HeartMate II, and HeartWare VADs. ASAIO J 2013;59:420–6. http://dx.doi.org/10.1097/MAT.0b013e3182937a3a.
[57] Schampaert S, Pennings Ka, Molengraft MA, van de MJG, Pijls NHJ, Vosse FNvan de, et al. A mock circulation model for cardiovascular device evaluation. Physiol Meas 2014;35:687. http://dx.doi.org/10.1088/0967-3334/35/4/687.
[58] Tuzun E, Pennings K, van Tuijl S, de Hart J, Stijnen M, van de Vosse F, et al. Assessment of aortic valve pressure overload and leaflet functions in an ex vivo beating heart loaded with a continuous flow cardiac assist device. Eur J Cardio-Thorac Surg Off J Eur Assoc Cardio-Thorac Surg 2014;45:377–83. http://dx.doi.org/10.1093/ejcts/ezt355.
[59] Schuster A, Grünwald I, Chiribiri A, Southworth R, Ishida M, Hay G, et al. An isolated perfused pig heart model for the development, validation and translation of novel cardiovascular magnetic resonance techniques. J Cardiovasc Magn Reson 2010;12:53. http://dx.doi.org/10.1186/1532-429X-12-53.
[60] Pelgrim GJ, Das M, Haberland U, Slump C, Handayani A, van Tuijl S, et al. Development of an ex vivo, beating heart model for CT myocardial perfusion. BioMed Res Int 2015; e412716. http://dx.doi.org/10.1155/2015/412716.
[61] Kozarski M, Ferrari G, Zielisnki K, Gorczynska K, Palko KJ, Fresiello L, et al. A hybrid (Hydro-numerical) cardiovascular model: application to investigate continuous-flow pump assistance effect. Biocybern Biomed Eng 2012;32(4):77–91. http://dx.doi.org/10.1016/S0208-5216(12)70051-7.
[62] Siewnicka A, Janiszowski K, Pałko T, Wnuk P. Hybrid cardiovascular simulator as a tool for physical reproduction of the conditions prevailing in the apex of the heart. Biocybern Biomed Eng 2016;36(3):473–81. http://dx.doi.org/10.1016/j.bbe.2016.03.006.
Uwagi
PL Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Kolekcja BazTech
Identyfikator YADDA bwmeta1.element.baztech-192337be-5109-445c-a768-f0ffe31fc01e
Identyfikatory
DOI 10.1016/j.bbe.2017.03.003