Narzędzia help

Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
first previous next last
cannonical link button


Journal of Power of Technologies

Tytuł artykułu

A mathematical analysis of two dimensional steady state heat conduction in the coil of an induction heater using finite element method

Autorzy Roy, D.  Naskar, A. K.  Sadhu, P. K. 
Treść / Zawartość
Warianty tytułu
Języki publikacji EN
EN In developing heaters typically an induction heater within specific temperature limits can be a key issue impacting the efficiency of the overall policy, as the typical loading of an induction heater is costly. Mathematical modelling is highly useful in terms of estimating the rise in temperature and in shedding light on the wider processes. The projected model might in addition reduce computing prices. The paper develops a 2-Dimensional (2-D) steady state thermal model in polar co-ordinates by means of finite element formulation and arch shaped components. A temperature time methodology is utilized to calculate the distribution of loss in various elements of the induction heater and used as input for finite element analysis. Additional precise temperature distributions are obtained. The projected model is applied to predict the temperature rise within the coil of the induction heater 3200 W totally encircled fan-cooled induction heater. The temperature distribution was determined considering convection from the outer air gap surface and circular finish surface for each entirely encircled and semi encircled structures.
Słowa kluczowe
PL podgrzewacz   cewka   wydajność projektu   MES   metoda elementów skończonych  
EN heater   coil   design performance   FEM   finite element method  
Wydawca Institute of Heat Engineering, Warsaw University of Technology
Czasopismo Journal of Power of Technologies
Rocznik 2017
Tom Vol. 97, nr 3
Strony 214--219
Opis fizyczny Bibliogr. 16 poz., rys., tab., wykr.
autor Roy, D.
  • Electrical Engineering Department, Batanagar Institute of Engineering, Management & Science A unit of Techno IndiaTM Group B7-360/New, Ward No.30, Putkhali, Maheshtala Kolkata - 700141, West Bengal, India,
autor Naskar, A. K.
  • Department of Electrical Engineering, Seacom Engineering College, Howrah-711302, India,
autor Sadhu, P. K.
  • Electrical Engineering Department, Indian School of Mines (under MHRD, Govt. of India), Dhanbad - 826004, India,
[1] A. Armor, 1981 power engineering society prize paper transient, threedimensional, finite-element analysis of heat flow in turbine-generator rotors, IEEE Power Engineering Review (9) (1981) 11–23.
[2] N. Contuzzi, S. Campanelli, A. Ludovico, 3 d finite element analysis in the selective laser melting process, International Journal of Simulation Modelling 10 (3) (2011) 113–121.
[3] P. Ternik, R. Rudolf, Heat transfer enhancement for natural convection flow of water-based nanofluids in a square enclosure, International Journal of Simulation Modelling 11 (1) (2012) 29–39.
[4] D. Sarkar, A. Naskar, Computation of thermal condition in an induction motor during reactor starting, International Journal of Electrical Power & Energy Systems 44 (1) (2013) 938–948.
[5] A. Naskar, D. Sarkar, New approach for computational analysis of temperature rise phenomena in the rotor of an induction motor, Energy Systems 6 (2) (2015) 221–247.
[6] Y. Huai, R. V. Melnik, P. B. Thogersen, Computational analysis of temperature rise phenomena in electric induction motors, Applied Thermal Engineering 23 (7) (2003) 779–795.
[7] A. M. Law, Simulation Modeling and Analysis, 5th Edition, McGraw-Hill, New York, 2015.
[8] T. A. Jankowski, D. P. Johnson, J. D. Jurney, J. E. Freer, L. M. Dougherty, S. A. Stout, Experimental observation and numerical prediction of induction heating in a graphite test article, in: The Proceeding of the COMSOL conference, 2009.
[9] J. Milewski, W. Bujalski, M. Wolowicz, K. Futyma, J. Kucowski, Offdesign operation of an 900 mw-class power plant with utilization of low temperature heat of flue gases, Journal of Power Technologies 95 (3) (2015) 221–227.
[10] P. Blecha, D. Prostrednik, Influence on the failure probability, Annals of DAAAM & Proceedings (2011) 11–13.
[11] L. Ran, E. Chong, C. Ng, M. Farrag, J. Holden, An inductive charger with a large air-gap, in: Power Electronics and Drive Systems, 2003. PEDS 2003. The Fifth International Conference on, Vol. 2, IEEE, 2003, pp. 868–871.
[12] A. K. Naskar, N. K. Bhattacharya, S. Saha, S. Kundu, Thermal analysis of underground power cables using two dimensional finite element method, in: Condition Assessment Techniques in Electrical Systems (CATCON), 2013 IEEE 1st International Conference on, IEEE, 2013, pp. 94–99.
[13] A. Naskar, D. Sarkar, Approximate analysis of 2-dimensional heat conduction in the rotor of an induction motor during reactor starting, in: 2012 IEEE 5th India International Conference on Power Electronics (IICPE), IEEE, 2012, pp. 1–6.
[14] C. Carretero, R. Alonso, J. Acero, Interference emission estimation of domestic induction cookers based on finite element simulation, Spanish MICINN under Project TEC2010-19207, Project CSD2009-00046, and Project IPT-2011-1158-920000, DGA-FSE and Bosch and Siemens Home Appliances Group (2011).
[15] D. Istardi, A. Triwinarko, Induction heating process design using comsol multiphysics software, TELKOMNIKA (Telecommunication Computing Electronics and Control) 9 (2) (2013) 327–334.
[16] A. Boadi, Y. Tsuchida, T. Todaka, M. Enokizono, Designing of suitable construction of high-frequency induction heating coil by using finite-element method, IEEE Transactions on Magnetics 41 (10) (2005) 4048–4050.
PL Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Kolekcja BazTech
Identyfikator YADDA bwmeta1.element.baztech-19131709-5ed9-46d4-aa49-1782a615ed01