Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Mechanical properties the Al-7%SiMg alloy with CuAl10Fe3Mn2 used in machine building and civil engineering

Treść / Zawartość
Warianty tytułu
Języki publikacji
Silumins are one of the most popular group among aluminum casting alloys. They are characterized by good mechanical and casting properties, low density, good electric and thermal conductivity, a low degree of contraction, good corrosion resistance and a relatively low melting temperature. The mechanical properties of hypoeutectic silumins can be improved through chemical modification as well as traditional or technological processing. Modification improves the mechanical properties of alloys through grain refinement. The effect of treatment has been given a lot of information first of all about microstructure and mechanical properties. This study presents the results of treatment of an Al-7%SiMg alloy with composition CuAl10Fe3Mn2 (as a powder) + (Al-7%SiMg + CuAl10Fe3Mn2) (as a powder) + (Al-7%SiMg + CuAl10Fe3Mn2) (in the form of a rod) in three different ranges. The experiments were conducted following a factor design 23 for 3 independent variables. The main addition was aluminum bronze, as well as clear or melted with raw alloy. The influence of the analyzed modifiers on the microstructure and mechanical properties of the processed alloy was presented in graphs. The modification of a hypoeutectic Al-7%SiMg alloy improved the alloy's properties. The results of the tests indicate that the mechanical properties of the modified alloy are determined by the components introduced to the alloy.
Opis fizyczny
Bibliogr. 44 poz., rys., tab.
  • University of Warmia and Mazury in Olsztyn, Poland
  • 1.Bolibruchová, D., Richtárech, L., 2013. Effect of adding iron to the AlSi7Mg0.3 (EN AC 42 100,A356) alloy. Manufacturing Technology 13(3), 276-281.
  • 2.Bolibruchová, D., Richtárech, L., 2016, Possibilities of Using Al-Si-Mg Alloys with Higher Fe Content for Demanding Castings. Manufacturing Technology 16(2), 317-323.
  • 3.Borkowski, S., Ulewicz, R., Selejdak, J., Konstanciak, M., Klimecka-Tatar, D., 2012. The use of 3x3 matrix to evaluation of ribbed wire manufacturing technology. 21st Int. Conf. on Metallurgy and Materials. Ostrava: TANGER, 1722-1728.
  • 4.Braszczyński J., 1991, Krystalizacja odlewów. WNT Warszawa.
  • 5.Bruna, M., Sládek, A., 2016, Hot Tearing Evaluation of Al Based Alloys. Manufacturing Technology 16(2), 323-327.
  • 6.Chrostek, T., 2016. Thermalanalysis of aluminum bronze BA1032. Technical Sciences 19(4), 359–366.
  • 7.Cook, R., 2008. Modification of Aluminium-Silicon Foundry Alloys. London & Scandinavian Metallurgical Co Limited.
  • 8.Dudek, A., Lisiecka, B., 2017. The effect of thermal oxidation of porous and non-porous titanium alloy. Metal 2017: 26th International Conference on Metallurgy and Materials. TANGER Ltd 1234-1239.
  • 9.EN ISO 6892-1:2016. Metallic materials. Tensile testing Part 1: Method of test at room temperature.
  • 10.EN ISO6506-1:2014. Metallic materials -- Brinell hardness test Part 1: Test method.
  • 11.Fisher, D.J., Kurz, W., 1977. Coupled zones in faced/nonfaced eutectics. Solidification and casting of metals. International conference on solidification. Sheffield.
  • 12.Góral, A., Jura, J., Bouzy, E., Sztwiertnia, K., Morgiel, J., Bonarski, J., 2006. Multiscale texture and orientation relationship investigation in Al-CuAl2 eutectic alloy, Archives of Metallurgy and Materials 51, 11-14.
  • 13.Hajek, J., Kriz, A., Hrydlicka, V., 2015. The heat treatment of aluminium bronzes. Manufacturing Technology 15(1), 35-41.
  • 14.Hao, Y., Gao, B., Tu, G.F., Li, S.W., Hao, S.Z., Dong, C., 2011. Surface modification of Al– 20Si alloy by high current pulsed electron beam. Applied Surface Science 257, 3913-3919.
  • 15.Kusmierczak, S., Müller, M. Lebedev, A., 2017. Evaluation of aluminium alloy surface machined by means of abrasive-free ultrasonic finishing. In 16th International Scientific Conference: Engineering For Rural Development 24.05.2017, Latvia Univ Agriculture, Faculty Engineering 167-174.
  • 16.Lipiński, T., 2008. Modification of Al-Si alloys with the use of a homogenous modifiers. Archives of Metallurgy and Materials 53(1), 193-197.
  • 17.Lipiński, T., 2008. Influence exothermical mixtures contents Na or B on elongation and hardness AlSi12 alloy. Archives of Foundry Engineering 8(1), 81-84.
  • 18.Lipiński, T., 2010. The structure and mechanical properties of Al-7%SiMg alloy treated with a homogeneous modifier. Solid State Phenomena 163, 183-186.
  • 19.Lipiński, T., 2011. Use Properties of the AlSi9Mg Alloy with Exothermical Modifier. Manufacturing Technology 11(11), 44-49.
  • 20.Lipinski, T., 2015. Double modification of AlSi9Mg alloy with boron, titanium and strontium. Archives of Metallurgy and Materials 60(3), 2415-2419.
  • 21.Lipiński, T., 2015. Modification of Al-11% Si Alloy with Cl – Based Modifier. Manufacturing Technology 15(4), 581-587.
  • 22.Lipiński, T., 2015. Influence of Surface Refinement on Microstructure of Al-Si Cast Alloys Processed by Welding Method. Manufacturing Technology 15(4), 576-581
  • 23.Lipinski, T., Szabracki, P., 2013. Modification of the Hypo-Eutectic Al-Si Alloys with an Exothermic Modifier. Archives of Metallurgy and Materials 58(2), 453-458.
  • 24.Michna, S., Lukac, I., Ocenasek, V., Koreny, R., Drapala, J., Schneider, H., Miskufova, A., 2005. Encyclopaedia of aluminium, Adin s.r.o. Presov. (in Czech).
  • 25.Mondelfo, L.F., 1976. Aluminium alloys. Structure and properties. Butter Wooths. London Boston.
  • 26.Náprstková, N., Cais, J., Stančeková, D., 2014. Influence of Alsi7Mg0.3 Alloy Modification by Sb on the Tool Wear. Manufacturing Technology 14(1), 75-79.
  • 27.Náprstková, N., Kuśmierczak, S., Cais, J., 2013. Modification of AlSi7Mg0.3 alloy by strontium. Manufacturing Technology 13(3), 373-380.
  • 28.Nová, I., Machuta, J., 2013. Squeeze casting results of aluminium alloys. Manufacturing Technology 13(1), 73-79.
  • 29.Novák, P., Šerák, J., Vojtěch, D., Zelinková, M., Mejzlíková, L., Michalcová, A., 2011. Effect of Alloying Elements on Microstructure and Properties of Fe-Al and Fe-Al-Si Alloys Produced by Reactive Sintering. Key Engineering Materials 465, 407-410.
  • 30.Osorio, W.R., Cheung, N., Spinelli, J.E., Cruz, K.S., Garcia, A., 2008. Microstructural modification by laser surface remelting and its effect on the corrosion resistance of an Al-9 wt%Si casting alloy. Applied Surface Science 254, 2763-2770.
  • 31.Pilarczyk, W., 2015. The investigation of the structure of bulk metallic glasses before and after laser welding. Cryst. Res. Technol. 9-10, 700-704.
  • 32.PN EN ISO 3651-1, Determination of resistance to intergranular corrosion of stainless steels. Part 1: Austenitic and ferritic-austenitic (duplex) stainless steels.
  • 33.Raghavan, V., 2010. Al-Cu-Si (Aluminum-Copper-Silicon). J. Phase Equilib. Diffus. 31, 39-40.
  • 34.Ruan, Y., Wei, B.B., 2009. Rapid solidification of undercooled Al-Cu-Si eutectic alloys. Chinese Sci. Bull. 54, 53-58.
  • 35.Stasiak-Betlejewska, R., Ulewicz, R., 2016. The effectiveness of selected machinery and equipment in the woodworking joinery. Path forward for wood products: a global perspective, proceedings of scientific papers 149-156.
  • 36.Styrylska, T., Pietraszek, J., 1992. Numerical modeling of non-steady-state temperature fields with supplementary data. ZAMM-Z. Angew. Math. Mech. 72, T537-T539.
  • 37.Ulewicz, R., Jelonek, D., Mazur, M., 2016, Implementation of logic flow in planning and production control. Management and Production Engineering Review 7, 89-94.
  • 38.Ulewicz, R., Selejdak, J. Borkowski, S., Jagusiak-Kocik, M., 2013. Process management in the cast iron foundry. Metal 2013: 22nd International Conference on Metallurgy and Materials. TANGER Ltd 1926-1931.
  • 39.Vandersluis, E., Ravindran, C., 2018. Relationships Between Solidification Parameters in A319 Aluminum Alloy. Journal of Materials Engineering and Performance 27(3), 1109-1121.
  • 40.Vaněček, D. - Sokovic, M. - Mádl, J., 2003. Selected Aspects of the Surface Integrity of Aluminium Alloy in High Speed Machining - Microhardness Variations and Surface Roughness. Journal of Mechanical Engineering - Strojniški Vestnik. 49(2), 111-115.
  • 41.Villars, P., Prince, A., Okamoto, H., 1995, Al-Cu-Si, Handbook of Ternary Alloy Phase Diagrams, ASM International, Materials Park, OH, 3, p 3331-3351.
  • 42.Vitalii, B., Dudek, A., 2017. Evaluation of composite epoxy resin applicability for concrete coatings. Composites Theory and Practice 17(4), 221-225.
  • 43.Wojnar, L., Gadek-Moszczak, A., PIETRASZEK, J., 2019. On the role of histomorphometric (stereological) microstructure parameters in the prediction of vertebrae compression strength. Image Analysis and Stereology 38, 63-73.
  • 44.Wołczyński, W., Sypien, A., Tarasek, A., Bydałek, A.W., 2017. Copper Droplets Agglomeration / Coagulation In The Conditions Similar To Industrial Ones. Archives of Metallurgy And Materials 62(1), 299-306.
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.