Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Concurrent validity and reliability of proprietary and open-source jump mat systems for the assessment of vertical jumps in sport sciences

Treść / Zawartość
Warianty tytułu
Języki publikacji
Vertical jump tests are used to assess lower-limb power of athletes in sport sciences. Flight time measurement with jump-mat systems is the most common procedure for this purpose. The aim of this study was to analyze the concurrent validity and reliability of two proprietary systems (Globus and Axon) and an open-source system (Chronojump). Methods: A conditioning electric circuit governed by a controlled wave generator is designed to substitute athletes jumping on a physical mat. In order to look for possible differences associated to timekeeping by each microcontroller device, all three systems are fed by the circuit simultaneously. Results: Concurrent validity was high for the three systems. Standarized typical error of estimate (TEE) was trivial, according to MBI interpretation, as well as perfect Pearson correlation coefficient. Reliability was assessed using coefficient of variation of flight time measure, resulting in 0.17–0.63% (0.05–0.12 cm) for Globus, 0.01% (0.09 cm) for Chronojump and 5.65–9.38% (2.15–3.53 cm) for Axon. These results show that all jump-mat system produced nearly identical measures of flight time so they can be considered valid and reliable for practical purposes. In comparison, Chronojump showed the best performance whereas Axon showed enough variability and disagreement to pose a problem in testing elite athletes. Conclusions: These experiments show that open-source jump mats are as valid and reliable as their proprietary counterparts at a lower cost. Therefore, practitioners can be confident in using Globus or Chronojump systems to test athletes’ jump height because of their negligible errors and Axon system to monitor general population.
Słowa kluczowe
sportowiec   skoki   sport   test  
Opis fizyczny
Bibliogr. 25 poz., rys., tab., wykr.
  • Department of Sport Sciences, University of Alicante, Ctra. San Vicente, Alicante, Spain,
  • Department of Sport Sciences, University of Alicante, Ctra. San Vicente, Alicante, Spain
  • Institute of Physical Culture, Kazimierz Wielki University, Bydgoszcz, Poland
  • Institute of Physical Culture, Kazimierz Wielki University, Bydgoszcz, Poland
  • Department of Sport Sciences, University of Alicante, Ctra. San Vicente, Alicante, Spain
  • [1] ANDRADE D.C., HENRIQUEZ-OLGUÍN C., BELTRAN A.R., RAMIREZ M.A., LABARCA C., CORNEJO M., ALVAREZ C., RAMIREZ-CAMPILLO R., Effects of general, specific and combined warm-up on explosive muscular performance, Biol. Sport, 2015, 32(2), 123–128.
  • [2] ATKINSON G., NEVILL A.M., Statistical methods for assessing measurement error (reliability) in variables relevant to sports medicine, Sports Med., 1998, 26(4), 217–238.
  • [3] BACA A., A comparison of methods for analyzing drop jump performance, Med. Sci. Sports Exerc., 1999, 31(3), 437–442.
  • [4] BLAND J.M., ALTMAN D., Statistical methods for assessing agreement between two methods of clinical measurement, The Lancet, 1986, 327(8476), 307–310.
  • [5] DE BLAS X., PADULLÉS J.M., LÓPEZ DEL AMO J.L., GUERRA-BALIC M., Creation and validation of Chronojump-Boscosystem: A free tool to measure vertical jumps, RICYDE, Revista Internacional de Ciencias del Deporte, 2012, 8(30), 334–356.
  • [6] BONNECHERE B., JANSEN B., SALVIA P., BOUZAHOUENE H., OMELINA L., MOISEEV F., SHOLUKHA V., CORNELIS J., ROOZE M., JAN S.V.S., Validity and reliability of the Kinect within functional assessment activities: comparison with standard stereophotogrammetry, Gait and Posture, 2014, 39(1), 593–598.
  • [7] BORGES JÚNIOR N.G., BORGES L., DIAS J.A., WENTZ M.D., MATTOS D.J.D.S., PETRY R., DOMENECH S.C., Validity of a new contact mat system for evaluating vertical jump, Motriz: Revista de Educação Física, 2011, 17(1), 26–32.
  • [8] BOSCO C., LUHTANEN P., KOMI P.V., A simple method for measurement of mechanical power in jumping, Eur. J. Appl. Physiol. Occup. Physiol., 1983, 50(2), 273–282.
  • [9] CHATZARAKIS G.E., COTTIS P.G., TORTORELI M.D., MALATESTAS P.B., KOLLIOPOULOS N.J., LIVIERATOS S.N., Powerful pedagogical approaches for finding Thevenin and Norton equivalent circuits for linear electric circuits, Int. J. Elect. Engin. Educ., 2005, 42(4), 350–368.
  • [10] GAJEWSKI J., MICHALSKI R., BUŚKO K., MAZUR-RÓŻYCKA J., STANIAK Z., Countermovement depth–a variable which clarifies the relationship between the maximum power output and height of a vertical jump, Acta Bioeng. Biomech., 2018, 20(1), DOI: 10.5277/ABB-01058-2017-02.
  • [11] GARCÍA-LÓPEZ J., MORANTE J.C., OGUETA-ALDAY A., RODRÍGUEZ-MARROYO J.A., The type of mat (Contact vs. Photocell) affects vertical jump height estimated from flight time, J. Strength Cond. Res., 2013, 27(4), 1162–1167.
  • [12] HATZE H., Validity and reliability of methods for testing vertical jumping performance, J. Appl. Biomech., 1998 14(2) 127–140.
  • [13] HAWKINS J., NOROOZI S., DUPAC M., SEWELL P., Development of a Wearable Sensor System for Dynamically Mapping the Behavior of an Energy Storing and Returning Prosthetic Foot, Measurement Science Review, 2016, 16(3), 174–182.
  • [14] HOPKINS W.G., Spreadsheets for analysis of validity and reliability, Sportscience, 2017, 21, 36–44.
  • [15] HOPKINS W., MARSHALL S., BATTERHAM A., HANIN J., Progressive statistics for studies in sports medicine and exercise science, Med. Sci. Sports Exerc., 2009, 41(1), 3–12.
  • [16] LEGG J., PYNE D.B., SEMPLE S., BALL N., Variability of Jump Kinetics Related to Training Load in Elite Female Basketball, Sports, 2017, 5(4), 85.
  • [17] MCMAHON J.J., JONES P.A., COMFORT P., A correction equation for jump height measured using the just jump system, Int. J. Sports Physiol. Performance, 2016, 11(4), 555–557.
  • [18] PIETRASZEWSKI B., RUTKOWSKA-KUCHARSKA A., Relative power of lower limbs in drop jump, Acta Bioeng. Biomech., 2011, 13(1), 13–18.
  • [19] SANTOS-LOZANO A., NAVARRO R.G., LÓPEZ I., VALLEJO N.G., Comparison of two systems designed to measure vertical jump height, RICYDE, Revista Internacional de Ciencias del Deporte, 2014, 10(36), 123–130.
  • [20] SHAHBAZI M., Hybrid 3D dynamic measurement by particle swarm optimization and photogrammetric tracking, Measurement Sci. Rev., 2013, 13(6), 298–304.
  • [21] SKUBLEWSKA-PASZKOWSKA M., MONTUSIEWICZ J., ŁUKASIK E., PSZCZOŁA-PASIERBIEWICZ I., BARAN K.R., SMOŁKA J., PUEO B., Motion capture as a modern technology for analysing ergometer rowing, Advances in Science and Technology Research Journal, 2016, 10(29), 132–140.
  • [22] SŁOMKA K.J., SOBOTA G., SKOWRONEK T., RZEPKO M., CZARNY W., JURAS G., Evaluation of reliability and concurrent validity of of two optoelectric systems used for recording maximum vertical jumping performance versus the gold standard, Acta Bioeng. Biomech., 2017, 19(2), 141–147.
  • [23] STRUZIK A., ZAWADZKI J., Leg stiffness during phases of countermovement and take-off in vertical jump, Acta Bioeng. Biomech., 2013, 15(2), 113–118.
  • [24] WHITMER T.D., FRY A.C., FORSYTHE C.M., ANDRE M.J., LANE M.T., HUDY A., HONNOLD D.E., Accuracy of a vertical jump contact mat for determining jump height and flight time, J. Strength Cond. Res., 2015, 29(4), 877–881.
  • [25] WINIARSKI S., RUTKOWSKA-KUCHARSKA A., Estimated ground reaction force in normal and pathological gait, Acta Bioeng. Biomech., 2009, 11(1), 53–60.
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.