Narzędzia help

Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
first previous next last
cannonical link button

http://yadda.icm.edu.pl:80/baztech/element/bwmeta1.element.baztech-177bb54d-1f87-4a48-9762-f9e011109837

Czasopismo

Archives of Electrical Engineering

Tytuł artykułu

Magnetic field of complex helical conductors

Autorzy Budnik, K.  Machczyński, W. 
Treść / Zawartość
Warianty tytułu
Języki publikacji EN
Abstrakty
EN Transmission of the electric power is accompanied with generation of low –frequency electromagnetic fields. Electromagnetic compatibility studies require that the fields from sources of electric power be well known. Unfortunately, many of these sources are not defined to the desired degree of accuracy. This applies e.g. to the case of the twisted-wire pair used in telephone communication; already practiced is twisting of insulated high-voltage three phase power cables and single-phase distribution cables as well. The paper presents a theoretical study of the calculation of magnetic fields in vicinity of conductors having helical structure. For the helical conductor with finite length the method is based on the Biot-Savart law. Since the lay-out of the cables is much more similar to a broken line than to strait line, in the paper the magnetic flux densities produced by helical conductor of complex geometry are also derived. The analytical formulas for calculating the 3D magnetic field can be used by a software tool to model the magnetic fields generated by e.g. twisted wires, helical coils, etc.
Słowa kluczowe
EN Biot-Savart law   magnetic flux density   helical line  
Wydawca Polish Academy of Sciences, Committee on Electrical Engineering
Czasopismo Archives of Electrical Engineering
Rocznik 2013
Tom Vol. 62, nr 4
Strony 533--540
Opis fizyczny Bibliogr. 16 poz., rys., wz.
Twórcy
autor Budnik, K.
  • Poznan University of Technology Institute of Electrical Engineering and Electronics ul. Piotrowo 3a, 60-965 Poznań, Poland
autor Machczyński, W.
Bibliografia
[1] Buchholz H., Elektrische Strömungsfelder mit Schraubenstruktur. Elektrische Nachrichtentechnik. 14(8): 264-284 (1937).
[2] Moser J.R., Spencer R.F., Predicting the magnetic fields from a twisted-pair cable. IEEE Trans. on Electromagnetic Compatibility. EMC-10(3): 324-329 (1968).
[3] Shenfeld S., Magnetic fields of twisted-wire pairs. IEEE Trans. on Electromagnetic Compatibility. EMC-11(4): 164-169 (1969).
[4] Haber F., The magnetic field in the vicinity of parallel and twisted three-wire cable carrying balancedthree-phased current. IEEE Trans. on Electromagnetic Compatibility. EMC-16(2): 76-82 (1974).
[5] Hagel R., Gong L., Unbehauen R., On the magnetic field of an infinitely long helical line current. IEEE Trans. on Magnetics. 30(1): 80-84 (1994).
[6] Pettersson P., Schönborg N., Reduction of power system magnetic field by configuration twist. IEEE Trans. on Power Delivery. 12(4): 1678-1683 (1997).
[7] Holbert K.E., Karady G.G., Adhikari S.G., Dyer M.L. Magnetic fields produced by undergroundresidential distribution system. IEEE Trans. on Power Delivery. 24(3): 1616-1622 (2009).
[8] Tominaka T., Okamura M., Katayama T. Analytical field calculation of helical coils. Nuclear Instruments and Methods in Physics Research. A 459: 398-411(2001).
[9] Tominaka T., Vector potential for a single helical current conductor. Nuclear Instruments and Methods in Physics Research. A 523: 1-8 (2004).
[10] Tominaka T., Chiba Y. Low frequency inductance for a twisted bifilar lead. Journal of Physics. D: Appl. Phys. 37: 1592-1595 (2004).
[11] Tominaka T., Inductance calculation for helical conductors. Superconductor Science and Technology 18: 214-222 (2005).
[12] Tominaka T., Self- and mutual inductances of long coaxial helical conductors. Superconductor Science and Technology 21: 1-11 (2008).
[13] Ehrich M., Fichte L.O. Magnetic field reduction of twisted three-phase power cables of finite lengthby specific phase mixing. Proceedings EMC’99, pp. 448-451 (1999) (Tokyo).
[14] Ehrich M., Fichte L.O., Lüer M. Magnetic field reduction of power cables by multi-splitting ofconductors and compensation effects. Asia-Pacific Conference on Environmental Electromagnetics CEEM’2000, pp. 33-38 (2000) (Shanghai).
[15] Ehrich M., Fichte L.O., Kurz S., Lüer M. Properties of a field-reduced twisted three-phase powercable of finite length. Asia-Pacific Conference on Environmental Electromagnetics CEEM’2003, pp. 13-16 (2003) (Hangzhou).
[16] Franek J., Kollar M. Determination of self and mutual inductances of double-helix coil. Journal of Electrical Engineering 60(5): 268-272 (2009).
Kolekcja BazTech
Identyfikator YADDA bwmeta1.element.baztech-177bb54d-1f87-4a48-9762-f9e011109837
Identyfikatory
DOI 10.2478/aee-2013-0043