Narzędzia help

Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
first previous next last
cannonical link button

http://yadda.icm.edu.pl:80/baztech/element/bwmeta1.element.baztech-1680f55c-b791-4cf5-aacb-8dc41672b0cd

Czasopismo

Acta of Bioengineering and Biomechanics

Tytuł artykułu

Structure and corrosion resistance of Co-Cr-Mo alloy used in Birmingham Hip Resurfacing system

Autorzy Dobruchowska, E.  Paziewska, M.  Przybyl, K.  Reszka, K. 
Treść / Zawartość
Warianty tytułu
Języki publikacji EN
Abstrakty
EN The endoprostheses made of cobalt-chromium-molybdenum (Co-Cr-Mo) alloys belong to the group of the most popular metallic implants used for hip joints reconstruction. For such biomaterials, the primary goal is correct and long-term functioning in the aggressive environment of body fluids. Therefore, the purpose of this study was to examine both the morphology and the corrosion resistance of implants made of the cobalt alloy used in Birmingham Hip Resurfacing (BHR) system (Smith & Nephew). For comparative purposes, the electrochemical studies were done for the nitrided stainless steel – Orthinox. Methods: Observations of the microstructure of the investigated material were performed by means of the optical metallographic microscope and the scanning electron microscope. Furthermore, Energy Dispersive X-ray Spectroscopy was used to analyse the chemical composition of the endoprosthesis. Characterisation and evaluation of electrochemical corrosion resistance of the selected alloys were performed by potentiodynamic polarisation tests. Results: The structural studies confirmed that Co-Cr-Mo (BHR system) is characterised by a typical dendritic microstructure with carbide precipitates, mainly M23C6, within the interdendritic areas. Results of the polarisation measurements showed that the investigated cobalt alloy exhibits lower corrosion potential than Orthinox in the utilised environments (3% NaCl, simulated body fluid – Hank’s Body Fluid). Conclusions: However, the high passivation ability of the Co-Cr-Mo alloy, as well as its resistance to the initiation and propagation of localised corrosion processes, indicate that this material is significantly more appropriate for long-term implants.
Słowa kluczowe
PL stopy kobaltu   stopy chromu   stopy molibdenu   karbid   odporność korozyjna   polaryzacja potencjodynamiczna   stal nierdzewna   stal azotowana  
EN cobalt-chromium-molybdenum alloy   Birmingham Hip Resurfacing   carbide   precipitation   corrosion resistance   potentiodynamic polarisation   nitrided stainless steel  
Wydawca Oficyna Wydawnicza Politechniki Wrocławskiej
Czasopismo Acta of Bioengineering and Biomechanics
Rocznik 2017
Tom Vol. 19, nr 2
Strony 31--39
Opis fizyczny Bibliogr. 25 poz., rys., tab., wykr.
Twórcy
autor Dobruchowska, E.
autor Paziewska, M.
  • Koszalin University of Technology, Faculty of Technology and Education
autor Przybyl, K.
  • Koszalin University of Technology, Faculty of Technology and Education
autor Reszka, K.
  • Koszalin University of Technology, Faculty of Technology and Education
Bibliografia
[1] Annual Report on Hip and Knee Arthroplasty Data, AJRR Annual Report 2013, Rosemont, IL, 2014.
[2] ASTM G61-86, Standard Test Method for Conducting Cyclic Potentiodynamic Polarization Measurements for Localized Corrosion Susceptibility of Iron-, Nickel-, or Cobalt-Based Alloys.
[3] Bahraminasab M., Sahari B.B., Edwards K.L., Farahmand F., Arumugamg M., Hong T.S., Aseptic loosening of femoral components – A review of current and future trend in materials used, Materials and Design, 2012, 42, 459–470.
[4] Bronzino J.D., The Biomedical Engineering Handbook, Second Edition, CRC Press LLC, 2000.
[5] Chohayeb A.A., Fraker A.C., Eichmiller F.C., Waterstrat R., Boyd J., Corrosion behaviour of dental casting alloys coupled with titanium, (in:) Brown S.A., Lemons J.E. (eds.), Medical application of titanium and its alloys: the material and biological issues, ASTM, Conshohocken, 1996.
[6] Cooper J.H., Della Valle C.J., Berger R.A., Tetreault M., Paprosky W.G., Sporer S.M., Jacobs J.J., Corrosion at the head-neck taper as a cause for adverse local tissue reactions after total hip arthroplasty, J. Bone Joint Surg. Am., 2012, 94(18), 1655-1661.
[7] Cooper J.H., Urban R.M., Wixson R.L., Meneghini R.M., Jacobs J.J., Adverse local tissue reaction arising from corrosion at the nemoral neck-body junction in a dual-taper stem with a cobalt-chromium modular neck, J. Bone Joint Surg. Am., 2013, 95(10), 865-872.
[8] Galvele J.R., Tafel’s law in pitting corrosion and crevice corrosion susceptibility, Corros. Sci., 2005, 47, 3053–3067.
[9] Garellick G., Karrholm J., Lindahl H., Malchau H., Rogmark C., Rolfson O., Swedish Hip Arthroplasty Register. Annual Report 2013, Gothenburg, 2014.
[10] Graves S., Hip and knee arthroplasty. AOAJRR Annual Report 2013, Adelaide 2013.
[11] Hernandez-Rodriguez M.A.L., Mercado-Solis R.D., Perez-Unzueta A.J., MartinezDelgado D.I., Cantu-Sifuentes M., Wear of cast metal–metal pairs for total replacement hip prostheses, Wear, 2005, 259, 958–963.
[12] Hsu Wen-Wei R., Yang Ch., Huang Ch., Chen Y., Electrochemical corrosion studies on Co-Cr-Mo implant alloy in biological solutions, Mater. Chem. Phys., 2005, 93, 531-538.
[13] http://www.smith-nephew.pl/. Accessed 11.09.2015.
[14] Jagielska-Wiaderek K., Bala H., Wieczorek P., Rudnicki J., Depth characterization of glow-discharge nitrided layer produced on AISI 4140 steel, Arch. Metall. Mater., 2010, 55, 515-519.
[15] Jiao S.Y., Zhang M.C., Zheng L., Dong J.X., Investigation of Carbide Precipitation Process and Chromium Depletion during Thermal Treatment of Alloy 690, Metall. Mater. Trans. A, 2010, 41A, 26-42.
[16] Kiel M., Krauze A., Marciniak J., Corrosion resistance of metallic implants used in bone surgery, Arch. Mat. Sci. Eng., 2008, 20, 77-80.
[17] Kiel-Jamrozik M., Szewczenko J., Basiaga M., Nowińska K., Technological capabilities of surface layers formation on implant made of T-6Al-4V ELI alloy, Acta of Bioengineering and Biomechanics, 2015, 17-1, 31-37.
[18] Lewthwaite S.C., Squires B., Gie G.A., Timperley A.J., Phil D., Ling R.S.M., The ExeterTM Universal Hip in Patients 50 Years or Younger at 10-17 Years’ Followup, Clin. Orthop. Relat. R., 2008, 466, 324–331.
[19] McCafferty E., Validation of corrosion rates measured by the Tafel extrapolation method, Corros. Sci., 2005, 47, 3202-3215.
[20] McMinn D.J., Development of Metal/Metal Hip Resurfacing, Hip. Int., 2003, 13(1), 41- 53.
[21] Milosev I., CoCrMo Alloy for Biomedical Applications, (in:) Diokic S. S. (ed.), Biomedical Applications, Springer Science+Business Media, New York, 2012.
[22] Narushima T., Mineta S., Kurihara Y., Ueda K., Precipitates in Biomedical Co-Cr alloys, JOM – J. Min. Met. Mat. S., 2013, 65, 489-503.
[23] Shi L., Northwood D.O., Cao Z., The properties of a wrought biomedical cobalt-chrome alloy, J. Mater. Sci., 1994, 29, 1233-1238.
[24] Stern M., Geary A.L., Electrochemical polarization I. A Theoretical analysis of the Shape of polarization curves, J. Electrochem. Soc., 1957, 104, 56-63.
[25] Thakur R.R., Ast M.P., McGraw M., Bostrom M.P., Rodriguez J.A., Parks M.L., Severe persistent synovitis after cobalt-chromium total knee arthroplasty requiring revision, Orthopedics, 2013, 36(4), e520-e524.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Kolekcja BazTech
Identyfikator YADDA bwmeta1.element.baztech-1680f55c-b791-4cf5-aacb-8dc41672b0cd
Identyfikatory
DOI 10.5277/ABB-00510-2015-04