PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Rough Approximation Operators in Group Mapping and Their Applications to Coding Theory

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper focuses on rough approximation operators in group mapping. The relationships between rough set theory and group theory are considered from a novel perspective. The necessary and sufficient conditions for the upper approximation and lower approximation of a group to be groups are analyzed. In addition, the homomorphism and isomorphism between two groups which have related upper or lower approximations are investigated. Finally, the applications of rough approximation operators in group mapping to coding theory are developed.
Wydawca
Rocznik
Strony
93--109
Opis fizyczny
Bibliogr. 35 poz., rys.
Twórcy
autor
  • Uncertainty Decision-Making Laboratory Sichuan University Chengdu 610064, P. R. China
autor
  • Uncertainty Decision-Making Laboratory Sichuan University Chengdu 610064, P. R. China
autor
  • Uncertainty Decision-Making Laboratory Sichuan University Chengdu 610064, P. R. China
Bibliografia
  • [1] Pawlak Z. Rough sets. International Journal of Computer and Information Sciences. 1982;11: 341–356. 108 J. Xu et al. / Rough Approximation Operators in Group Mapping
  • [2] Slowinski R, Vanderpooten D. A generalized definition of rough approximations based on similarity. IEEE Transactions on Knowledge & Data Engineering. 2000;2:331–336. doi:10.1109/69.842271.
  • [3] Marek VW, Truszczyński M. Contributions to the theory of rough sets. Fundamenta Informaticae. 1999; 39(4):389–409. doi:10.3233/FI-1999-39404.
  • [4] Yao YY. On generalizing Pawlak approximation operators. Rough Sets and Current Trends in Computing. 1998;298–307. doi:10.1007/3-540-69115-4 41.
  • [5] Yao YY, Lingras PJ. Interpretations of belief functions in the theory of rough sets. Information Sciences. 1998;104(1):81–106. doi:10.1016/S0020-0255(97)00076-5.
  • [6] Tao Z, Xu J. A class of rough multiple objective programming and its application to solid transportation problem. Information Sciences. 2012;188:215–235. doi: 10.1016/j.ins.2011.11.022.
  • [7] Dembczyński K, Greco S, Słowiński R. Rough set approach to multiple criteria classification with imprecise evaluations and assignments. European Journal of Operational Research. 2009;198(2):626–636. doi:10.1016/j.ejor.2008.09.033.
  • [8] Yao YY. The superiority of three-way decisions in probabilistic rough set models. Information Sciences. 2011;181(6):1080–1096. doi:10.1016/j.ins.2010.11.019.
  • [9] Bonikowski Z. Algebraic structures of rough sets. Rough Sets, Fuzzy Sets and Knowledge Discovery. 1994; p.242–247. doi:10.1007/978-1-4471-3238-7 29.
  • [10] Grzymala-Busse JW, Sedelow JWA. On rough sets and information system homomorphisms. Bulletin of the Polish Academy of Sciences Technical sciences. 1988;36(3-4):233–239.
  • [11] Iwinski TB. Algebraic approach to rough sets. Bulletin of the Polish Academy of Sciences, Mathematics. 1987;35:673–683.
  • [12] Marek VW. Characterizing Pawlak’s approximation operators. vol. 4400. Springer Berlin Heidelberg; 2007. ISBN:978-3-540-71663-1. doi:10.1007/978-3-540-71663-1.
  • [13] Wu Z, Li T, Qin K, Ruan D. Approximation Operators, Binary Relation and Basis Algebra in L-fuzzy Rough Sets. Fundamenta Informaticae. 2011;111(1):47–63. doi:10.3233/FI-2011-553.
  • [14] Yao YY, Wong SKM, Lin TY. A review of rough set models. Rough Sets and Data Mining. 1996; p.47–75.
  • [15] Biswas R, Nanda S. Rough groups and rough subgroups. Bulletin of the Polish Academy of Sciences-Mathematics. 1994;42(3):251–254.
  • [16] Davvaz B. Roughness in rings. Information Sciences. 2004;164(1-4):147–163. doi:10.1016/j.ins.2003.10.001.
  • [17] Davvaz B, Mahdavipour M. Roughness in modules. Information Sciences. 2006;176(24):3658–3674. doi:10.1016/j.ins.2006.02.014.
  • [18] Kuroki N. Rough ideals in semigroups. Information Sciences. 1997;100(1):139–163. doi:10.1016/S0020-0255(96)00274-5.
  • [19] Kuroki N,Wang PP. The lower and upper approximations in a fuzzy group. Information Sciences. 1996;90(1-4):203–220. doi:10.1016/0020-0255(95)00282-0.
  • [20] Miao DQ, Han SQ, Li DG, Sun LJ. Rough group, rough subgroup and their properties. vol. 3641, p. 104–113. Springer Berlin Heidelberg; 2005. doi:10.1007/11548669 11.
  • [21] Wang CZ, Chen DG. A short note on some properties of rough groups. Computers & Mathematics with Applications. 2010;59(1):431–436.
  • [22] Hoffman DG, Leonard DA, Lidner CC, Phelps KT, Rodger CA. Coding theory: the essentials. Marcel Dekker Inc.; First Edition; 1991.
  • [23] Aktac¸ H. Some algebraic applications of soft sets. Applied Soft Computing. 2015;28:327–331. doi:10.1016/j.asoc.2014.11.045.
  • [24] Slepian D. Group codes for the Gaussian channel. Bell System Technical Journal. 1968;47(4):575–602.
  • [25] Forney JGD. Geometrically uniform codes. Information Theory, IEEE Transactions on. 1991;37(5):1241–1260. doi:10.1109/18.133243.
  • [26] Biglieri E, Elia M. On the existence of group codes for the Gaussian channel. IEEE Transactions on Information Theory. 1972;18(3):399–402. doi:10.1109/TIT.1972.1054815.
  • [27] Bernal JJ, Río AD, Simón JJ. Group code structures of affine-invariant codes. Journal of Algebra. 2011; 325(1):269–281. doi:10.1016/j.jalgebra.2010.08.021.
  • [28] Fagnani F, Zampieri S. Dynamical systems and convolutional codes over finite abelian groups. IEEE Transactions on Information Theory. 1996;42(6):1892–1912.
  • [29] WillemsW. A note on self-dual group codes. IEEE Transactions on Information Theory. 2001;48(12):3107–3109. doi:10.1109/TIT.2002.805076.
  • [30] Jacobson N. Basic Algebra I. vol. 2. W.A. Freeman and Co, San Francisco 1974/1980; 1980. doi:10.2307/2323244.
  • [31] Pawlak Z, Skowron A. Rough sets and Boolean reasoning. Information Sciences. 2007;177(1):41–73. doi:10.1016/j.ins.2006.06.007.
  • [32] der Waerden BLV. Moderne Algebra. 1930;1:12–31.
  • [33] Lint JHV. Introduction to Coding Theory. vol. 86. Springer-Verlag Berlin Heidelberg; 1999. doi:10.1007/978-3-642-58575-3.
  • [34] Dornhoff LL, Hohn EE. Applied Modern Algebra. New York, Macmillan publishing Co Inc.; 1978. ISBN:10:0023299800.
  • [35] Fagnani F, Zampieri S. Dynamical systems and convolutional codes over finite abelian groups, IEEE Transactions on Information Theory. 1996;42(6):1892-1912.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-15b8565a-4f62-4977-8821-79be62efc6e9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.